Abstract

Adaptive biometric recognition systems have been proposed to deal with natural changes of the clients’ biometric traits due to multiple factors, like aging. However, their adaptability to changes may be exploited by an attacker to compromise the stored templates, either to impersonate a specific client, or to deny access to him. In this paper we show how a carefully designed attack may gradually poison the template gallery of some users, and successfully mislead a simple PCA-based face verification system that performs self-update.

Keywords

Biometric recognition Adaptive biometric systems Template self-update Principal component analysis Poisoning attack 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barreno, M., Nelson, B., Sears, R., Joseph, A.D., Tygar, J.D.: Can machine learning be secure? In: Proc. Symp. on Information, Computer and Comm. Sec. (ASIACCS), pp. 16–25. ACM (2006)Google Scholar
  2. 2.
    Biggio, B., Akhtar, Z., Fumera, G., Marcialis, G.L., Roli, F.: Security evaluation of biometric authentication systems under real spoofing attacks. IET Biometrics 1(1), 11–24 (2012)CrossRefGoogle Scholar
  3. 3.
    Jiang, X., Ser, W.: Online fingerprint template improvement. IEEE Trans. Pattern Analysis and Machine Intell. 24(8), 1121–1126 (2002)CrossRefGoogle Scholar
  4. 4.
    Kloft, M., Laskov, P.: Online anomaly detection under adversarial impact. In: Proc. 13th Int’l Conf. on AI and Statistics (AISTATS), pp. 405–412 (2010)Google Scholar
  5. 5.
    Laskov, P., Lippmann, R.: Machine learning in adversarial environments. Machine Learning 81, 115–119 (2010)CrossRefGoogle Scholar
  6. 6.
    Nelson, B., Joseph, A.D.: Bounding an attack’s complexity for a simple learning model. In: Proc. 1st Workshop on Tackling Computer Systems Problems with ML Techniques, SysML (2006)Google Scholar
  7. 7.
    Roli, F., Marcialis, G.L.: Semi-supervised PCA-Based Face Recognition Using Self-training. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR 2006 and SPR 2006. LNCS, vol. 4109, pp. 560–568. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Ryu, C., Kim, H., Jain, A.K.: Template adaptation based fingerprint verification. In: Proc. 18th Int’l Conf. Pattern Rec., vol. 04, pp. 582–585. IEEE CS (2006)Google Scholar
  9. 9.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neuroscience 3(1), 71–86 (1991)CrossRefGoogle Scholar
  10. 10.
    Uludag, U., Ross, A., Jain, A.K.: Biometric template selection and update: a case study in fingerprints. Pattern Recognition 37(7), 1533–1542 (2004)CrossRefGoogle Scholar
  11. 11.
    Yambor, W.S.: Analysis of PCA-based and Fisher discriminant-based image recognition algorithms. Technical Report, Colorado State University (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Battista Biggio
    • 1
  • Giorgio Fumera
    • 1
  • Fabio Roli
    • 1
  • Luca Didaci
    • 1
  1. 1.Department of Electrical and Electronic EngineeringUniversity of CagliariCagliariItaly

Personalised recommendations