RSA Vulnerabilities with Small Prime Difference

  • Marián Kühnel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7242)

Abstract

The security of the RSA cryptosystem is based on the assumption that recovering the private key from a public pair is a hard task. However, if the private key is smaller than some bound the system is considered to be insecure. An RSA modulus with a small difference of its prime factors also significantly reduces the overall security. We show that the bound on small private key with respect to small prime difference can be further improved. Therefore, we adapt the technique of unravelled linearization for constructing lattices and although the adapted unravelled linearization is only a method for generating lattices in more elegant way, we yield a benefit compared to known bounds.

Keywords

RSA unravelled linearization prime difference small secret exponent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boneh, D., Durfee, G.: Cryptanalysis of RSA with Private Key d Less than N 0.292. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 1–11. Springer, Heidelberg (1999)Google Scholar
  2. 2.
    Blömer, J., May, A.: A Generalized Wiener Attack on RSA. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 1–13. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Blömer, J., May, A.: Low Secret Exponent RSA Revisited. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 4–19. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Coppersmith, D.: Small Solutions to Polynomial Equations, and Low Exponent RSA Vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Herrmann, M., May, A.: Attacking Power Generators Using Unravelled Linearization: When Do We Output Too Much? In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 487–504. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Herrmann, M., May, A.: Maximizing Small Root Bounds by Linearization and Applications to Small Secret Exponent RSA. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 53–69. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Howgrave-Graham, N.: Finding Small Roots of Univariete Modular Equations Revisited. In: Möhring, R.H. (ed.) WG 1997. LNCS, vol. 1335, pp. 131–142. Springer, Heidelberg (1997)Google Scholar
  8. 8.
    Lenstra, A.K., Hendrik, Lovász, L.: Factoring Polynomials with Rationals Coefficients. Mathematische Annalen 261(4), 515–534 (1982)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    McKee, J.: Speeding Fermat’s Factoring Method. Math. Comput. 68, 1729–1737 (1999)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    The PARI Group, Bordeaux: PARI//GP, version 2.5.0 (2011), http://pari.math.u-bordeaux.fr
  11. 11.
    Shoup, V.: NTL: A Library for Doing Number Theory (2003), http://www.shoup.net/ntl
  12. 12.
    Schnorr, C.P.: Block Korkin-Zolotarev Bases and Succesiva Minima (1996)Google Scholar
  13. 13.
    Wiener, M.: Cryptanalysis of Short RSA Secret Exponents. IEEE Transactions on Information Theory 36, 553–558 (1990)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    De Weger, B.: Cryptanalysis of RSA with Small Prime Difference, Applicable Algebra in Engineering. Communication and Computing 13(1), 17–28 (2002)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marián Kühnel
    • 1
  1. 1.IT Security GroupRWTH AachenGermany

Personalised recommendations