Intelligent Data Analysis by a Home-Use Human Monitoring Robot

  • Shinsuke Sugaya
  • Daisuke Takayama
  • Asuki Kouno
  • Einoshin Suzuki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7619)

Abstract

In this paper, we argue that a home-use autonomous mobile robot is a platform for a new kind of Intelligent Data Analysis (IDA). Recent advancement of hardware and software for robotics have enabled us to construct a small yet powerful, autonomous mobile robot from components in low cost. Such a robot is able to perform machine learning and data mining in the real world for a long period, which opens a new avenue for IDA. This paper improves and studies one of our monitoring robots in detail to reveal promising directions and challenges inherent in the new kind of IDA.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Durrant-Whyte, H., Bailey, T.: Simultaneous Localisation and Mapping (SLAM): Part I The Essential Algorithms. IEEE Robotics and Automation Magazine 13(2), 99–110 (2006)CrossRefGoogle Scholar
  2. 2.
    Bailey, T., Durrant-Whyte, H.: Simultaneous Localisation and Mapping (SLAM): Part II State of the Art. IEEE Robotics and Automation Magazine 13(3), 108–117 (2006)CrossRefGoogle Scholar
  3. 3.
    Boubou, S., Kouno, A., Suzuki, E.: Implementing Camshift on a Mobile Robot for Person Tracking and Pursuit. In: Proc. Eleventh IEEE International Conference on Data Mining Workshops (ICDMW 2011), pp. 682–688 (2011)Google Scholar
  4. 4.
    Kouno, A., Takayama, D., Suzuki, E.: Predicting the State of a Person by an Office-use Autonomous Mobile Robot. In: Proc. of IAT (accepted, 2012)Google Scholar
  5. 5.
    Matsumoto, E., Sebag, M., Suzuki, E.: Avoiding Humans with SVM - a Case of Small Autonomous Mobile Robot in an Office. In: Computer and Information Sciences II: 26th International Symposium on Computer and Information Sciences (ISCIS 2011), pp. 283–287 (2011)Google Scholar
  6. 6.
    Takano, S., Suzuki, E.: New Object Detection for On-Board Robot Vision by Lifting Complex Wavelet Transforms. In: Proc. Eleventh IEEE International Conference on Data Mining Workshops (ICDMW 2011), pp. 911–916 (2011)Google Scholar
  7. 7.
    Takemoto, K., Takano, S., Suzuki, E.: Human Detection by a Small Autonomous Mobile Robot. In: Extraction et Gestion des Connaissances (EGC 2012), pp. 531–536 (2012)Google Scholar
  8. 8.
    Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: Computer Vision and Pattern Recognition (CVPR 2005), pp. 886–893 (2005)Google Scholar
  9. 9.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)MATHGoogle Scholar
  10. 10.
    Cutler, R., Shekhar, C., Burns, B., Chellappa, R., Bolles, R., Davis, L.S.: Monitoring Human and Vehicle Activities Using Airborne Video. In: Proc. SPIE, vol. 3905, pp. 146–153. Int. Soc. Opt. Eng. (2000)Google Scholar
  11. 11.
    Fiore, L., Fehr, D., Bodor, R., Drenner, A., Somasundaram, G., Papanikolopoulos, N.: Multi-camera Human Activity Monitoring. Journal of Intelligent & Robotic Systems 52(1), 5–43 (2008)CrossRefGoogle Scholar
  12. 12.
    Zouba, N., Boulay, B., Bremond, F., Thonnat, M.: Monitoring Activities of Daily Living (ADLs) of Elderly Based on 3D Key Human Postures. In: Caputo, B., Vincze, M. (eds.) ICVW 2008. LNCS, vol. 5329, pp. 37–50. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Ayers, D., Shah, M.: Monitoring Human Behavior from Video Taken in an Office Environment. Image and Vision Computing 19(12), 833–846 (2001)CrossRefGoogle Scholar
  14. 14.
    Hsu, C., Lin, C.: A Comparison of Methods for Multi-class Support Vector Machines. IEEE Transactions on Neural Networks 13(2), 415–425 (2002)CrossRefGoogle Scholar
  15. 15.
    Weston, J., Watkins, C.: Support Vector Machines for Multi-class Pattern Recognition. In: Proc. Seventh European Symposium on Artificial Neural Networks (ESANN 1999), pp. 219–224 (1999)Google Scholar
  16. 16.
    Kosov, S., Thormählen, T., Seidel, H.-P.: Accurate Real-Time Disparity Estimation with Variational Methods. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J., Wang, J.-X., Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A., Encarnação, M.L., Silva, C.T., Coming, D. (eds.) ISVC 2009, Part I. LNCS, vol. 5875, pp. 796–807. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Phung, S., Bouzerdoum, A., Chai, D.: Skin Segmentation Using Color Pixel Classification: Analysis and Comparison. IEEE Trans. PAMI 27(1), 148–154 (2005)CrossRefGoogle Scholar
  18. 18.
    Joachims, T.: Making Large-Scale SVM Learning Practical. In: Advances in Kernel Methods - Support Vector Learning, pp. 169–184. MIT Press (1999)Google Scholar
  19. 19.
    Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From Data Mining to Knowledge Discovery: An Overview. In: Advances in Knowledge Discovery and Data Mining, pp. 1–34. AAAI/MIT Press, Menlo Park, Calif. (1996)Google Scholar
  20. 20.
    Shotton, J., Fitzgibbon, A.W., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-Time Human Pose Recognition in Parts from Single Depth Images. In: 24th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2011), pp. 1297–1304 (2011)Google Scholar
  21. 21.
    Dargie, W., Poellabauer, C.: Fundamentals of Wireless Sensor Networks. John Wiley & Sons, Chichester (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shinsuke Sugaya
    • 1
  • Daisuke Takayama
    • 1
  • Asuki Kouno
    • 2
  • Einoshin Suzuki
    • 1
  1. 1.Department of Informatics, ISEEKyushu UniversityFukuokaJapan
  2. 2.Graduate School of System Life SciencesKyushu UniversityFukuokaJapan

Personalised recommendations