Mass Scale Modeling and Simulation of the Air-Interface Load in 3G Radio Access Networks

  • Dejan Radosavljevik
  • Peter van der Putten
  • Kim Kyllesbech Larsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7619)

Abstract

This paper outlines the approach developed together with the Radio Network Strategy & Design Department of a large telecom operator in order to forecast the Air-Interface load in their 3G network, which is used for planning network upgrades and budgeting purposes. It is based on large scale intelligent data analysis and modeling at the level of thousands of individual radio cells resulting in 100,000 models. It has been embedded into a scenario simulation framework that is used by end users not experienced in data mining for studying and simulating the behavior of this complex networked system.

Keywords

Mobile Network Air-Interface Load Linear Regression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van der Putten, P., van Someren, M.: A Bias-Variance Analysis of a Real World Learning Problem: The CoIL Challenge 2000. Machine Learning 57(1-2), 177–195 (2004)MATHCrossRefGoogle Scholar
  2. 2.
    Yates, R.: A framework for uplink power control in cellular radio systems. IEEE JSAC 13(7), 3141–3147 (1995)MathSciNetGoogle Scholar
  3. 3.
    Geijer Lundin, E., Gunnarsson, F., Gustafsson, F.: Uplink load estimation in WCDMA. In: Proc. IEEE Wireless Communications and Networking Conference (2003)Google Scholar
  4. 4.
    Muckenheim, J., Bernhard, U.: A Framework for Load Control in 3rd Generation CDMA Networks. In: Proc. of the IEEE Global Telecommunications Conference, vol. 6, pp. 3738–3742 (2001)Google Scholar
  5. 5.
    Natalizio, E., Marano, S., Molinaro, A.: Packet scheduling algorithms for providing QoS on UMTS downlink shared channels. In: IEEE VTC, vol. 4, pp. 2597–2601 (2005)Google Scholar
  6. 6.
    Nokia Siemens Networks: Nokia Siemens Networks WCDMA RAN, Rel. RU10- System Library, v.1: RNC Counters – RNW Part. Nokia Siemens Networks. Proprietary and Confidential (2008)Google Scholar
  7. 7.
    Feinberg, E.A., Genethliou, D.: Load Forecasting. In: Chow, J.W., Wu, F.F., Momoh, J. (eds.) Applied Mathematics for Restructured Electric Power Systems, pp. 269–285. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Svoboda, P., Buerger, M., Rupp, M.: Forecasting of Traffic Load in a Live 3G Packet Switched Core Network. In: Proc. of 6th International Symposium on CNSDSP, pp. 433–437 (2008)Google Scholar
  9. 9.
    Bermolen, P., Rossi, D.: Support vector regression for link load prediction. Computer Networks 53(2), 191–201 (2009)CrossRefGoogle Scholar
  10. 10.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Technique, 2nd edn. Morgan Kaufmann, San Francisco (2005)MATHGoogle Scholar
  11. 11.
    Oracle.: Oracle Database Documentation Library, http://www.oracle.com/pls/db102/homepage
  12. 12.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1) (2009)Google Scholar
  13. 13.
    Strawberry Perl, http://strawberryperl.com/
  14. 14.
    Microsoft Corporation: Microsoft Excel, http://office.microsoft.com/en-us/excel/
  15. 15.
    Christiansen, T., Torkington, N.: Perl Cookbook, 2nd edn. O’Reilly, Sebastopol (2003)Google Scholar
  16. 16.
    Kohavi, R., John, G.: Wrappers for feature subset selection. In: Artificial Intelligence 1997, pp. 273–324 (1997)Google Scholar
  17. 17.
    Tsamardinos, I., Aliferis, C.: Towards principled feature selection: Relevancy, filters and wrappers. In: Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistic (2003)Google Scholar
  18. 18.
    Caruana, R.: Multitask Learning. Machine Learning 28, 41–75 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dejan Radosavljevik
    • 1
  • Peter van der Putten
    • 1
  • Kim Kyllesbech Larsen
    • 2
  1. 1.LIACSLeiden UniversityLeidenThe Netherlands
  2. 2.Deutsche Telecom AGBonnGermany

Personalised recommendations