Information Theoretic Approach to Improve Performance of Networked Control Systems

  • Marko Paavola
  • Mika Ruusunen
  • Aki Sorsa
  • Kauko Leiviskä
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7619)

Abstract

Networked control systems (NCS) could be utilised in several industrial applications. However, the variable time delays introduced by the network impair the NCS performance, resulting even in the instability of the controlled process. To mitigate the delay problems, the advantage is taken from model-based, adaptive controllers. This calls for an efficient approach for on-line analysis of measurements applied to update the controller state in NCS. The paper introduces a new adaptive Model Predictive Controller (MPC) capable of compensating for variations in measurement and actuating delays. Weighting factors for delayed measurements and actuators are adjusted based on normalised version of mutual information that is calculated using a procedure described in the paper. The method is superior compared with other, more usual, metrics.

Keywords

information theory adaptive control model predictive control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antsaklis, P., Baillieul, J.: Special Issue on Technology of Networked Control Systems. Proceedings of the IEEE 9, 5–8 (2007)CrossRefGoogle Scholar
  2. 2.
    Hespanha, J.P., Naghshtabrizi, P., Xu, Y.: A survey of recent results in networked control systems. Proceedings of the IEEE 95, 138–162 (2007)CrossRefGoogle Scholar
  3. 3.
    Yliniemi, L., Leiviskä, K.: Process control across wired network. In: IASTED International Conference on Parallel and Distributed Computing and Networks, February 14-16. Acta Press, Innsbruck (2006)Google Scholar
  4. 4.
    Tipsuwan, Y., Chow, M.-Y.: Control methodologies in networked control systems. Control Engineering Practise, 1099–1111 (2003)Google Scholar
  5. 5.
    Paavola, M.: An efficient entropy estimation approach. Doctoral Thesis C394, Acta Universitatis Ouluensis (2011)Google Scholar
  6. 6.
    Caruntu, C.F., Lazar, C.: Networked predictive control for time-varying delay compensation with an application to automotive mechatronics system. Control Engineering and Applied Informatic 13, 19–25 (2011)Google Scholar
  7. 7.
    The Mathworks, Inc, http://www.mathworks.com
  8. 8.
    Jaccard, P.: Étude comparative de la distribution floraledansune portion des Alpeset des Jura. Bulletin de la SociétéVaudoise des Sciences Naturelles 37, 547–579 (1901)Google Scholar
  9. 9.
    Estévez, P.A., Tesmer, M., Perez, C.A., Zurada, J.M.: Normalized mutual information feature selection. IEEE Transactions on Neural Networks 20, 189–201 (2009)CrossRefGoogle Scholar
  10. 10.
    Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423, 623–656 (1948)MathSciNetMATHGoogle Scholar
  11. 11.
    Kaiser, A., Schreiber, T.: Information transfer in continuous processes. Physica D 166, 43–62 (2002)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Vu, V.Q., Yu, B., Kass, R.E.: Information in the nonstationary case. Neural Computation 21, 688–703 (2009)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Physical Review A 33, 1134–1140 (1986)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marko Paavola
    • 1
  • Mika Ruusunen
    • 1
  • Aki Sorsa
    • 1
  • Kauko Leiviskä
    • 1
  1. 1.Control Engineering LaboratoryUniversity of OuluFinland

Personalised recommendations