On Security of Universal Hash Function Based Multiple Authentication

  • Aysajan Abidin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7618)

Abstract

Universal hash function based multiple authentication was originally proposed by Wegman and Carter in 1981. In this authentication, a series of messages are authenticated by first hashing each message by a fixed (almost) strongly universal2 hash function and then encrypting the hash value with a preshared one-time pad. This authentication is unconditionally secure. In this paper, we show that the unconditional security cannot be guaranteed if the hash function output for the first message is not encrypted, as remarked in [1]. This means that it is not only sufficient, but also necessary, to encrypt the hash of every message to be authenticated in order to have unconditional security. The security loss is demonstrated by a simple existential forgery attack. The impact of the attack is also discussed at the end.

Keywords

ε-Almost Strongly Universal hash functions multiple authentication unconditionally secure Quantum Key Distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atici, M., Stinson, D.R.: Universal Hashing and Multiple Authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 16–30. Springer, Heidelberg (1996)Google Scholar
  2. 2.
    Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proc. IEEE Int. Conf. Comput. Syst. Signal Process, Bangalore, India, pp. 175–179 (1984)Google Scholar
  3. 3.
    Bernstein, D.J.: The Poly1305-AES Message-Authentication Code. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Bernstein, D.J.: Stronger Security Bounds for Wegman-Carter-Shoup Authenticators. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 164–180. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Bierbrauer, J., Johansson, T., Kabatianskii, G., Smeets, B.: On Families of Hash Functions via Geometric Codes and Concatenation. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 331–342. Springer, Heidelberg (1994)Google Scholar
  6. 6.
    Black, J.: Message authentication codes. Ph.D. thesis, University of California Davis, USA (2000)Google Scholar
  7. 7.
    Black, J., Cochran, M.: MAC Reforgeability. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 345–362. Springer, Heidelberg (2009), http://dx.doi.org/10.1007/978-3-642-03317-9_21 CrossRefGoogle Scholar
  8. 8.
    Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: Fast and Secure Message Authentication. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 216–233. Springer, Heidelberg (1999)Google Scholar
  9. 9.
    den Boer, B.: A simple and key-economical unconditional authentication scheme. J. Comp. Sec. 2, 65–72 (1993)Google Scholar
  10. 10.
    Brassard, G.: On computationally secure authentication tags requiring short secret shared keys. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) CRYPTO, pp. 79–86. Plenum Press, New York (1982)Google Scholar
  11. 11.
    Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst. Sci. 18, 143–154 (1979)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Halevi, S., Krawczyk, H.: MMH: Software Message Authentication in the Gbit/Second Rates. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 172–189. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  13. 13.
    Handschuh, H., Preneel, B.: Key-Recovery Attacks on Universal Hash Function Based MAC Algorithms. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 144–161. Springer, Heidelberg (2008), http://dx.doi.org/10.1007/978-3-540-85174-5_9 Google Scholar
  14. 14.
    Krawczyk, H.: LFSR-Based Hashing and Authentication. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994)Google Scholar
  15. 15.
    Krawczyk, H.: New Hash Functions for Message Authentication. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 301–310. Springer, Heidelberg (1995)Google Scholar
  16. 16.
    Rogaway, P.: Bucket Hashing and Its Application to Fast Message Authentication. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 29–42. Springer, Heidelberg (1995)Google Scholar
  17. 17.
    Shor, P.W., Preskill, J.: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)CrossRefGoogle Scholar
  18. 18.
    Shoup, V.: On Fast and Provably Secure Message Authentication Based on Universal Hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 313–328. Springer, Heidelberg (1996)Google Scholar
  19. 19.
    Simmons, G.J.: A survey of information authentication. Proceedings of the IEEE 76(5), 603 (1988)CrossRefGoogle Scholar
  20. 20.
    Stinson, D.R.: Universal Hashing and Authentication Codes. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 74–85. Springer, Heidelberg (1992)Google Scholar
  21. 21.
    Stinson, D.R.: Combinatorial techniques for universal hashing. J. Comput. Syst. Sci. 48, 337–346 (1994)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Stinson, D.R.: On the connections between universal hashing, combinatorial designs and error-correcting codes. Congressus Numerantium 114, 7–27 (1996)MathSciNetMATHGoogle Scholar
  23. 23.
    Stinson, D.R.: Universal hash families and the leftover hash lemma, and applications to cryptography and computing. J. Combin. Math. Combin. Comput. 42, 3–31 (2002)MathSciNetMATHGoogle Scholar
  24. 24.
    Wegman, M.N., Carter, L.: New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci. 22, 265–279 (1981)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Aysajan Abidin
    • 1
  1. 1.Department of Electrical EngineeringLinköping UniversityLinköpingSweden

Personalised recommendations