Advertisement

Conversion of Real-Numbered Privacy-Preserving Problems into the Integer Domain

  • Wilko Henecka
  • Nigel Bean
  • Matthew Roughan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7618)

Abstract

Secure Multiparty Computation (SMC) enables untrusting parties to jointly compute a function on their respective inputs without revealing any information but the outcome. Almost all techniques for SMC support only integer inputs and operations. We present a secure scaling protocol for two parties to map real number inputs into integers without revealing any information about their respective inputs. The main component is a novel algorithm for privacy-preserving random number generation. We also show how to implement the protocol using Yao’s garbled circuit technique.

Keywords

Input Size Oblivious Transfer Exit Condition Boolean Circuit Respective Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Catrina, O., Saxena, A.: Secure Computation with Fixed-Point Numbers. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 35–50. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Fouque, P., Stern, J., Wackers, G.: Cryptocomputing with Rationals. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 136–146. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Franz, M., Deiseroth, B., Hamacher, K., Jha, S., Katzenbeisser, S., Schroeder, H.: Secure computations on Non-Integer values. Technical report (2010)Google Scholar
  4. 4.
    Nguyen, H., Roughan, M.: Multi-Observer privacy preserving hidden markov models. In: IEEE/IFIP NOMS, pp. 514–517 (2012)Google Scholar
  5. 5.
    Blanton, M., Aliasgari, M.: Secure computation of biometric matching. Technical Report CSE Technical Report 2009-03, University of Notre Dame (April 2009)Google Scholar
  6. 6.
    Bianchi, T., Piva, A., Barni, M.: On the implementation of the discrete fourier transform in the encrypted domain. IEEE Transactions on Information Forensics and Security, 86–97 (March 2009)Google Scholar
  7. 7.
    Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, pp. 160–164 (1982)Google Scholar
  8. 8.
    Yao, A.C.: How to generate and exchange secrets. In: 27th Annual Symposium on Foundations of Computer Science, pp. 162–167. IEEE (October 1986)Google Scholar
  9. 9.
    Lindell, Y., Pinkas, B.: An Efficient Protocol for Secure Two-Party Computation in the Presence of Malicious Adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure Two-Party Computation Is Practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation using garbled circuits. In: USENIX Security Symposium (2011)Google Scholar
  12. 12.
    Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - a secure two-party computation system. In: USENIX Security Symposium (2004)Google Scholar
  13. 13.
    Henecka, W., Kögl, S., Sadeghi, A.R., Schneider, T., Wehrenberg, I.: TASTY: tool for automating secure two-party computations. In: Proceedings of the 17th ACM Conference on Computer and Communications Security, CCS 2010, pp. 451–462 (2010)Google Scholar
  14. 14.
    Henecka, W., Schneider, T.: EFSFE: Even faster secure function evaluation (submission, 2012)Google Scholar
  15. 15.
    Frikken, K.: Secure multiparty computation. In: Algorithms and Theory of Computation Handbook, 2nd edn., pp. 1–16. Chapman & Hall/CRC (2009)Google Scholar
  16. 16.
    Kolesnikov, V., Schneider, T.: Improved Garbled Circuit: Free XOR Gates and Applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Kolesnikov, V., Sadeghi, A., Schneider, T.: Improved Garbled Circuit Building Blocks and Applications to Auctions and Computing Minima. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending Oblivious Transfers Efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Wilko Henecka
    • 1
  • Nigel Bean
    • 1
  • Matthew Roughan
    • 1
  1. 1.School of Mathematical SciencesUniversity of AdelaideAustralia

Personalised recommendations