Efficient Concurrent Oblivious Transfer in Super-Polynomial-Simulation Security

  • Susumu Kiyoshima
  • Yoshifumi Manabe
  • Tatsuaki Okamoto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7631)

Abstract

In this paper, we show a concurrent oblivious transfer protocol in super-polynomial-simulation (SPS) security. Our protocol does not require any setup and does not assume any independence among the inputs. In addition, our protocol is efficient since it does not use any inefficient primitives such as general zero-knowledge proofs for all NP statements. This is the first concurrent oblivious transfer protocol that achieves both of these properties simultaneously. The security of our protocol is based on the decisional Diffie-Hellman (DDH) assumption.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aiello, W., Ishai, Y., Reingold, O.: Priced Oblivious Transfer: How to Sell Digital Goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Barak, B., Sahai, A.: How to play almost any mental game over the net - concurrent composition via super-polynomial simulation. In: FOCS, pp. 543–552. IEEE Computer Society (2005)Google Scholar
  3. 3.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS, pp. 136–145. IEEE Computer Society (2001)Google Scholar
  4. 4.
    Canetti, R.: Universally composable signature, certification, and authentication. In: CSFW, pp. 219–233. IEEE Computer Society (2004)Google Scholar
  5. 5.
    Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the plain model from standard assumptions. In: FOCS, pp. 541–550. IEEE Computer Society (2010)Google Scholar
  7. 7.
    Canetti, R., Rabin, T.: Universal Composition with Joint State. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Simple, Black-Box Constructions of Adaptively Secure Protocols. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 387–402. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Damgård, I., Nielsen, J.B., Orlandi, C.: Essentially Optimal Universally Composable Oblivious Transfer. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 318–335. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Garay, J.A., MacKenzie, P.D.: Concurrent oblivious transfer. In: FOCS, pp. 314–324. IEEE Computer Society (2000)Google Scholar
  12. 12.
    Garg, S., Goyal, V., Jain, A., Sahai, A.: Concurrently Secure Computation in Constant Rounds. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 99–116. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Aho, A.V. (ed.) STOC, pp. 218–229. ACM (1987)Google Scholar
  14. 14.
    Green, M., Hohenberger, S.: Universally Composable Adaptive Oblivious Transfer. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 179–197. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Green, M., Hohenberger, S.: Practical Adaptive Oblivious Transfer from Simple Assumptions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 347–363. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Haitner, I., Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions of protocols for secure computation. SIAM J. Comput. 40(2), 225–266 (2011)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding Cryptography on Oblivious Transfer – Efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)Google Scholar
  18. 18.
    Kilian, J.: Founding cryptography on oblivious transfer. In: Simon, J. (ed.) STOC, pp. 20–31. ACM (1988)Google Scholar
  19. 19.
    Kurosawa, K., Nojima, R., Phong, L.T.: Efficiency-Improved Fully Simulatable Adaptive OT under the DDH Assumption. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 172–181. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Lindell, A.Y.: Efficient Fully-Simulatable Oblivious Transfer. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 52–70. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Lindell, Y.: Lower bounds and impossibility results for concurrent self composition. J. Cryptology 21(2), 200–249 (2008)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Lindell, Y., Oxman, E., Pinkas, B.: The IPS Compiler: Optimizations, Variants and Concrete Efficiency. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 259–276. Springer, Heidelberg (2011)Google Scholar
  23. 23.
    Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Kosaraju, S.R. (ed.) SODA, pp. 448–457. ACM/SIAM (2001)Google Scholar
  24. 24.
    Naor, M., Pinkas, B.: Computationally secure oblivious transfer. J. Cryptology 18(1), 1–35 (2005)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Pass, R.: Simulation in Quasi-Polynomial Time, and its Application to Protocol Composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Pass, R., Venkitasubramaniam, M.: On Constant-Round Concurrent Zero-Knowledge. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 553–570. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Pass, R., Wee, H.: Black-Box Constructions of Two-Party Protocols from One-Way Functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient and Composable Oblivious Transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)Google Scholar
  29. 29.
    Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic round-complexity. In: FOCS, pp. 366–375. IEEE Computer Society (2002)Google Scholar
  30. 30.
    Prabhakaran, M., Sahai, A.: New notions of security: achieving universal composability without trusted setup. In: Babai, L. (ed.) STOC, pp. 242–251. ACM (2004)Google Scholar
  31. 31.
    Rabin, M.O.: How to exchange secrets by oblivious transfer. Tech. rep., TR-81, Harvard Aiken Computation Laboratory (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Susumu Kiyoshima
    • 1
  • Yoshifumi Manabe
    • 1
    • 2
  • Tatsuaki Okamoto
    • 1
    • 3
  1. 1.Graduate School of InformaticsKyoto UniversityJapan
  2. 2.NTT Communication Science LaboratoriesJapan
  3. 3.NTT Secure Platform LaboratoriesJapan

Personalised recommendations