Boomerang Distinguishers for Full HAS-160 Compression Function

  • Yu Sasaki
  • Lei Wang
  • Yasuhiro Takasaki
  • Kazuo Sakiyama
  • Kazuo Ohta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7631)

Abstract

This paper studies a boomerang-attack-based distinguisher against full steps of the compression function of HAS-160, which is the hash function standard in Korea. The attack produces a second-order collision for the full steps of the compression function with a complexity of 276.06, which is faster than the currently best-known generic attack with a complexity of 280. Previously Dunkelman et al. in 2009 applied a boomerang-based key-recovery attack on the internal block cipher of HAS-160. Because the goal of their attack is different from ours, the attack on the compression function has been reconstructed and optimized from scratch. As a result of the exhaustive search of the message difference, we found that the same message difference as theirs is the best choice for the first subcipher. We then propose some improvement to construct a differential characteristic from the message difference, which the probability of the characteristic increases from 2− 47 to 2− 44. Thus our new characteristic also improves their key-recovery attack on the internal block cipher of HAS-160.

Keywords

HAS-160 hash function 4-sum second-order collision boomerang attack 

References

  1. 1.
    Telecommunications Technology Association.: Hash Function Standard Part 2: Hash Function Algorithm Standard, HAS-160 (2000)Google Scholar
  2. 2.
    Yun, A., Sung, S.H., Park, S., Chang, D., Hong, S.H., Cho, H.-S.: Finding Collision on 45-Step HAS-160. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 146–155. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Cho, H.-S., Park, S., Sung, S.H., Yun, A.: Collision Search Attack for 53-Step HAS-160. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 286–295. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Mendel, F., Rijmen, V.: Colliding Message Pair for 53-Step HAS-160. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 324–334. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Sasaki, Y., Aoki, K.: A Preimage Attack for 52-Step HAS-160. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 302–317. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Hong, D., Koo, B., Sasaki, Y.: Improved Preimage Attack for 68-Step HAS-160. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 332–348. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Dunkelman, O., Fleischmann, E., Gorski, M., Lucks, S.: Related-Key Rectangle Attack of the Full HAS-160 Encryption Mode. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 157–168. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Aumasson, J.-P., Çalık, Ç., Meier, W., Özen, O., Phan, R.C.-W., Varıcı, K.: Improved Cryptanalysis of Skein. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 542–559. Springer, Heidelberg (2009); Extended version is available at Cryptology ePrint Archive: Report 2009/438CrossRefGoogle Scholar
  10. 10.
    Biryukov, A., Nikolić, I., Roy, A.: Boomerang Attacks on BLAKE-32. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 218–237. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Lamberger, M., Mendel, F.: Higher-order differential attack on reduced SHA-256. Cryptology ePrint Archive, Report 2011/037 (2011), http://eprint.iacr.org/2011/037
  12. 12.
    Sasaki, Y.: Boomerang Distinguishers on MD4-Family: First Practical Results on Full 5-Pass HAVAL. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 1–18. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Sasaki, Y., Wang, L.: 2-dimension sums: Distinguishers beyond three rounds of RIPEMD-128 and RIPEMD-160. Cryptology ePrint Archive, Report 2012/049 (2012), http://eprint.iacr.org/2012/049
  14. 14.
    Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Biryukov, A., Lamberger, M., Mendel, F., Nikolić, I.: Second-Order Differential Collisions for Reduced SHA-256. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 270–287. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Wagner, D.: A Generalized Birthday Problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved Cryptanalysis of the Reduced Grøstl Compression Function, ECHO Permutation and AES Block Cipher. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 16–35. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yu Sasaki
    • 1
  • Lei Wang
    • 2
  • Yasuhiro Takasaki
    • 2
  • Kazuo Sakiyama
    • 2
  • Kazuo Ohta
    • 2
  1. 1.NTT Secure Platform LaboratoriesNTT CorporationMusashino-shiJapan
  2. 2.The University of Electro-CommunicationsChoufu-shiJapan

Personalised recommendations