The Position Heap of a Trie

  • Yuto Nakashima
  • Tomohiro I
  • Shunsuke Inenaga
  • Hideo Bannai
  • Masayuki Takeda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7608)

Abstract

The position heap is a text indexing structure for a single text string, recently proposed by Ehrenfeucht et al. [Position heaps: A simple and dynamic text indexing data structure, Journal of Discrete Algorithms, 9(1):100-121, 2011]. In this paper we introduce the position heap for a set of strings, and propose an efficient algorithm to construct the position heap for a set of strings which is given as a trie. For a fixed alphabet our algorithm runs in time linear in the size of the trie. We also show that the position heap can be efficiently updated after addition/removal of a leaf of the input trie.

Keywords

Tated Editing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alstrup, S., Holm, J., de Lichtenberg, K., Thorup, M.: Maintaining information in fully dynamic trees with top trees. ACM Transactions on Algorithms 1(2), 243–264 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Amir, A., Farach, M., Idury, R.M., La Poutré, J.A., Schäffer, A.A.: Improved dynamic dictionary matching. Information and Computation 119(2), 258–282 (1995)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bender, M.A., Farach-Colton, M.: The level ancestor problem simplified. Theor. Comput. Sci. 321(1), 5–12 (2004)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Berkman, O., Vishkin, U.: Finding level-ancestors in trees. J. Comput. Syst. Sci. 48(2), 214–230 (1994)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Blumer, A., Blumer, J., Haussler, D., Mcconnell, R., Ehrenfeucht, A.: Complete inverted files for efficient text retrieval and analysis. J. ACM 34(3), 578–595 (1987)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M.T., Seiferas, J.: The smallest automaton recognizing the subwords of a text. Theoret. Comput. Sci. 40, 31–55 (1985)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Breslauer, D.: The suffix tree of a tree and minimizing sequential transducers. Theoretical Computer Science 191(1-2), 131–144 (1998)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Coffman, E., Eve, J.: File structures using hashing functions. Communications of the ACM 13, 427–432 (1970)MATHCrossRefGoogle Scholar
  9. 9.
    Ehrenfeucht, A., McConnell, R.M., Osheim, N., Woo, S.-W.: Position heaps: A simple and dynamic text indexing data structure. Journal of Discrete Algorithms 9(1), 100–121 (2011)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Inenaga, S., Hoshino, H., Shinohara, A., Takeda, M., Arikawa, S., Mauri, G., Pavesi, G.: On-line construction of compact directed acyclic word graphs. Discrete Applied Mathematics 146(2), 156–179 (2005)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction. J. ACM 53(6), 918–936 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kosaraju, S.R.: Efficient tree pattern matching. In: Proc. FOCS 1989, pp. 178–183 (1989)Google Scholar
  13. 13.
    Kucherov, G.: On-Line Construction of Position Heaps. In: Grossi, R., Sebastiani, F., Silvestri, F. (eds.) SPIRE 2011. LNCS, vol. 7024, pp. 326–337. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Manber, U., Myers, G.: Suffix arrays: A new method for on-line string searches. SIAM J. Computing 22(5), 935–948 (1993)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Shibuya, T.: Constructing the suffix tree of a tree with a large alphabet. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E86-A(5), 1061–1066 (2003)Google Scholar
  16. 16.
    Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260 (1995)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Weiner, P.: Linear pattern-matching algorithms. In: Proc. of 14th IEEE Ann. Symp. on Switching and Automata Theory, pp. 1–11 (1973)Google Scholar
  18. 18.
    Westbrook, J.: Fast Incremental Planarity Testing. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 342–353. Springer, Heidelberg (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yuto Nakashima
    • 1
  • Tomohiro I
    • 1
    • 2
  • Shunsuke Inenaga
    • 1
  • Hideo Bannai
    • 1
  • Masayuki Takeda
    • 1
  1. 1.Department of InformaticsKyushu UniversityJapan
  2. 2.Japan Society for the Promotion of Science (JSPS)Japan

Personalised recommendations