Advertisement

Efficient Data Structures for the Factor Periodicity Problem

  • Tomasz Kociumaka
  • Jakub Radoszewski
  • Wojciech Rytter
  • Tomasz Waleń
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7608)

Abstract

We present several efficient data structures for answering queries related to periods in words. For a given word w of length n the Period Query given a factor of w (represented by an interval) returns its shortest period and a compact representation of all periods. Several algorithmic solutions are proposed that balance the data structure space (ranging from O(n) to O(nlogn)), and the query time complexity (ranging from O(log1 + ε n) to O(logn)).

Keywords

Arithmetic Progression Query Time Compact Representation Small Period Expected Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge University Press (2007)Google Scholar
  2. 2.
    Crochemore, M., Iliopoulos, C., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: Extracting Powers and Periods in a String from Its Runs Structure. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 258–269. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific (2003)Google Scholar
  4. 4.
    Farach, M.: Optimal suffix tree construction with large alphabets. In: FOCS, pp. 137–143. IEEE Computer Society (1997)Google Scholar
  5. 5.
    Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proceedings of the American Mathematical Society 16, 109–114 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Gusfield, D.: Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology. Cambridge University Press (1997)Google Scholar
  7. 7.
    Karhumäki, J., Lifshits, Y., Rytter, W.: Tiling periodicity. Discrete Mathematics & Theoretical Computer Science 12(2), 237–248 (2010)MathSciNetGoogle Scholar
  8. 8.
    Kopelowitz, T., Lewenstein, M.: Dynamic weighted ancestors. In: Bansal, N., Pruhs, K., Stein, C. (eds.) SODA, pp. 565–574. SIAM (2007)Google Scholar
  9. 9.
    Nekrich, Y., Navarro, G.: Sorted Range Reporting. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 271–282. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tomasz Kociumaka
    • 1
  • Jakub Radoszewski
    • 1
  • Wojciech Rytter
    • 1
    • 2
  • Tomasz Waleń
    • 3
    • 1
  1. 1.Faculty of Mathematics, Informatics and MechanicsUniversity of WarsawWarsawPoland
  2. 2.Faculty of Mathematics and Computer ScienceCopernicus UniversityToruńPoland
  3. 3.Laboratory of Bioinformatics and Protein EngineeringInternational Institute of Molecular and Cell Biology in WarsawPoland

Personalised recommendations