Achievements and Challenges in Recognizing and Reconstructing Civil Infrastructure

  • Ioannis Brilakis
  • Fei Dai
  • Stefania-Christina Radopoulou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7474)

Abstract

The US National Academy of Engineering recently identified restoring and improving urban infrastructure as one of the grand challenges of engineering. Part of this challenge stems from the lack of viable methods to map/label existing infrastructure. For computer vision, this challenge becomes “How can we automate the process of extracting geometric, object oriented models of infrastructure from visual data?” Object recognition and reconstruction methods have been successfully devised and/or adapted to answer this question for small or linear objects (e.g. columns). However, many infrastructure objects are large and/or planar without significant and distinctive features, such as walls, floor slabs, and bridge decks. How can we recognize and reconstruct them in a 3D model? In this paper, strategies for infrastructure object recognition and reconstruction are presented, to set the stage for posing the question above and discuss future research in featureless, large/planar object recognition and modeling.

Keywords

recognition reconstruction infrastructure buildings construction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Jaselskis, E.J., Gao, Z., Walters, R.C.: Improving transportation projects using laser scanning. Journal of Construction Engineering & Management 131(3), 377–384 (2005)CrossRefGoogle Scholar
  3. 3.
    Brilakis, I., German, S., Zhu, Z.: Visual Pattern Recognition Models for Remote Sensing of Civil Infrastructure. Journal of Computing in Civil Engineering 25(5) (2011) (in press)Google Scholar
  4. 4.
    Reddington, J.: Leica Geosystems HDS Plant Seminar, http://www.wipco.co.kr/2005_Data/Korea%20plant%20oct05.pdf
  5. 5.
    Sanders, F.H.: 3D Laser Scanning Helps Chevron Revamp Platform. Oil & Gas Journal 99(18), 92–98 (2001)Google Scholar
  6. 6.
  7. 7.
    Eastman, C., Teicholz, P., Sacks, R., Liston, K.: BIM Handbook: A Guide to Building Information Modeling. Wiley, New Jersey (2008)Google Scholar
  8. 8.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2004)MATHCrossRefGoogle Scholar
  9. 9.
    Nistér, D.: Automatic Passive Recovery of 3D from Images and Video. In: 2nd International Symposium on 3D Data Processing, Visualization & Transmission, pp. 438–445. IEEE Press, Washington (2004)CrossRefGoogle Scholar
  10. 10.
    Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the World from Internet Photo Collections. International Journal of Computer Vision 80(2), 189–210 (2008)CrossRefGoogle Scholar
  11. 11.
    Pollefeys, M., Nister, D., Frahm, J., Akbarzadeh, A., Mordohai, P., Clipp, B., Engels, C., Gallup, D., Kim, S., Merrell, P., Salmi, C., Sinha, S., Talton, B., Wang, L., Yang, Q., Stewenius, R., Welch, G., Towles, H.: Detailed Real-time Urban 3d Reconstruction from Video. International Journal of Computer Vision 78(23), 143–167 (2008)CrossRefGoogle Scholar
  12. 12.
    Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Reconstructing Building Interiors from Images. In: 12th International Conference on Computer Vision, pp. 80–87. IEEE Press, Kyoto (2009)CrossRefGoogle Scholar
  13. 13.
    Golparvar-Fard, M., Savarese, S., Peña-Mora, F.: Interactive Visual Construction Progress Monitoring with 4D Augmented Reality Model. In: Construction Research Congress, Seattle, pp. 41–50 (2009)Google Scholar
  14. 14.
    Agarwal, S., Furukawa, Y., Snavely, N., Curless, B., Seitz, S., Szeliski, R.: Reconstructing Rome. IEEE Computer 43(6), 40–47 (2010)CrossRefGoogle Scholar
  15. 15.
    Gallup, D., Frahm, J., Pollefeys, M.: Piecewise Planar and Non-planar Stereo for Urban Scene Reconstruction. In: 23rd IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, pp. 1418–1425 (2010)Google Scholar
  16. 16.
    Bosché, F., Haas, C.T.: Automated Retrieval of 3D CAD Model Objects in Construction Range Images. Automation in Construction 17(4), 499–512 (2008)CrossRefGoogle Scholar
  17. 17.
    Pu, S., George, V.: Knowledge Based Reconstruction of Building Models from Terrestrial Laser Scanning Data. International Journal of Photogrammetry and Remote Sensing 64(6), 575–584 (2009)CrossRefGoogle Scholar
  18. 18.
    Tang, P., Huber, D., Akinci, B., Lipman, R., Lytle, A.: Automatic Reconstruction of As-built Building Information Models from Laser-scanned Point Clouds: A Review of Related Techniques. Automation in Construction 19(7), 829–843 (2010)CrossRefGoogle Scholar
  19. 19.
    Son, H., Kim, C.: 3d Structural Component Recognition and Modeling Method using Color and 3d Data for Construction Progress Monitoring. Automation in Construction 19(7), 844–854 (2010)CrossRefGoogle Scholar
  20. 20.
    Xiong, X., Huber, D.: Using Context to Create Semantic 3D Models of Indoor Environments. In: British Machine Vision Conference, Aberystwyth, pp. 45.1–45.11 (2010)Google Scholar
  21. 21.
    Huber, D., Akinci, B., Adan, O.A., Anil, E., Okorn, B.E., Xiong, X.: Methods for Automatically Modeling and Representing As-built Building Information Models. In: NSF Engineering Research and Innovation Conference, Atlanta (2011)Google Scholar
  22. 22.
    Adan, O.A., Xiong, X., Akinci, B., Huber, D.: Automatic Creation of Semantically Rich 3D Building Models from Laser Scanner Data. In: Proceedings of the International Symposium on Automation and Robotics in Construction (2011)Google Scholar
  23. 23.
    Valero, E.R., Adan, O.A., Huber, D., Cerrada, C.: Detection, Modeling, and Classification of Moldings for Automated Reverse Engineering of Buildings from 3D Data. In: 28th International Symposium on Automation and Robotics in Construction (2011)Google Scholar
  24. 24.
  25. 25.
    Reality Measurements Inc., http://www.realitymeasurements.com
  26. 26.
    Zhu, Z., Brilakis, I.: Comparison of Civil Infrastructure Optical-based Spatial Data Acquisition Techniques. Journal of Computing in Civil Engineering 23(3), 170–177 (2009)CrossRefGoogle Scholar
  27. 27.
    Azhar, S., Hein, M., Sketo, B.: Building information modeling: Benefits, risks and challenges. In: 44th Associated Schools of Construction National Conference, Auburn (2008)Google Scholar
  28. 28.
    Nüchter, A., Surmann, H., Lingemann, K., Hertzberg, J.: Semantic scene analysis of scanned 3d indoor environments. In: Eighth International Fall Workshop on Vision, Modeling and Visualization, pp. 215–221 (2003)Google Scholar
  29. 29.
    Pu, S., George, V.: Knowledge based reconstruction of building models from terrestrial laser scanning data. International Journal of Photogrammetry and Remote Sensing 64(6), 575–584 (2009)CrossRefGoogle Scholar
  30. 30.
    Pu, S.: Automatic building modeling from terrestrial laser scanning. In: Oosterom, P., Zlatanova, S., Penninga, F., Fendel, E.M., Cartwright, W., Gartner, G., Meng, L., Peterson, M.P. (eds.) Advances in 3d Geoinformation Systems, Part II, Theme II. LNGC, pp. 141–160. Springer, Heidelberg (2008)Google Scholar
  31. 31.
    Shin, S., Hryciw, R.D.: Wavelet Analysis of Soil Mass Images for Particle Size Determination. Journal of Computing in Civil Engineering 18(1), 19–27 (2004)CrossRefGoogle Scholar
  32. 32.
    Masad, E., Al-Rousan, T., Button, J., Little, D., Tutumluer, E.: Test Methods for Characterizing Aggregate Shape, Texture, and Angularity. National Cooperative Highway Research Program (NCHRP), Report 555 (2007) Google Scholar
  33. 33.
    Pan, T., Tutumluer, E.: Imaging based evaluation of coarse aggregate size and shape properties affecting pavement performance. In: Proceedings of Geo-Frontiers Congress, Austin (2005)Google Scholar
  34. 34.
    Lee, S., Chang, L.M., Chen, P.H.: Performance comparison of bridge coating defect recognition method. Corrosion 61(1), 12–20 (2005)CrossRefGoogle Scholar
  35. 35.
    Jeong, H., Abraham, D.M.: A decision tool for the selection of imaging technologies to detect underground infrastructure. Tunneling and Underground Space Technology 19(2), 175–191 (2003)CrossRefGoogle Scholar
  36. 36.
    Hutchinson, T.C., Chen, Z.: Improved image analysis for evaluating concrete damage. Journal of Computing in Civil Engineering 20(3), 210–216 (2006)CrossRefGoogle Scholar
  37. 37.
    Lester, J., Bernold, L.E.: Innovation to characterize buried utilities using Ground Penetrating Radar. Automation in Construction 16(4), 546–555 (2007)CrossRefGoogle Scholar
  38. 38.
    Chen, Z.W., Xu, Y.L., Li, Q., Wu, D.J.: Dynamic Stress Analysis of Long Suspension Bridges under Wind, Railway, and Highway Loadings. Journal of Bridge Engineering 16, 383–392 (2008)CrossRefGoogle Scholar
  39. 39.
    Chae, M.J., Iseley, T., Abraham, D.M.: Computerized sewer pipe condition assessment. In: International Conference on Pipeline Engineering and Construction, pp. 477–493. ASCE, Baltimore (2003)Google Scholar
  40. 40.
    Costello, S.B., Chapman, D.N., Rogers, C.D.F., Metje, N.: Underground asset location and condition assessment technologies. Tunneling and Underground Space Technology 22(5-6), 524–542 (2007)CrossRefGoogle Scholar
  41. 41.
    Sinha, S.K., Fieguth, P.W.: Automated detection of Cracks in Buried Concrete Pipe Images. Automation in Construction 15(1), 58–72 (2006)CrossRefGoogle Scholar
  42. 42.
    Yang, M.D., Su, T.C.: Segmenting ideal morphologies of sewer pipe defects on CCTV images for automated diagnosis. Expert Systems with Applications 36(2), 3562–3573 (2009)CrossRefMathSciNetGoogle Scholar
  43. 43.
    Guo, W., Soibelman, L., Garrett, J.H.: Automated defect detection for sewer pipeline inspection and condition assessment. Automation in Construction 18(5), 587–596 (2009)CrossRefGoogle Scholar
  44. 44.
    Zhu, Z., Brilakis, I.: Detecting Air Pockets for Architectural Concrete Quality Assessment using Visual Sensing. Journal of Information Technology in Construction 13, 86–102 (2008)Google Scholar
  45. 45.
    Zhu, Z., Brilakis, I.: Machine Vision based Concrete Surface Quality Assessment. Journal of Construction Engineering and Management, ASCE 136(2), 210–218 (2010)CrossRefGoogle Scholar
  46. 46.
    Shih, N.J., Wu, M.C., Kunz, J.: The inspections of as-built construction records by 3D point clouds. Center for Integrated Facility Engineering, Working Paper #090, Stanford University (2004)Google Scholar
  47. 47.
    Akinci, B., Boukamp, F., Gordon, C., Huber, D., Lyons, C., Park, K.: A formalism for utilization of sensor systems and integrated project models for active construction quality control. Automation in Construction 15(2), 124–138 (2006)CrossRefGoogle Scholar
  48. 48.
    Kim, C., Haas, C.T., Liapi, K.A.: Rapid, on-site spatial information acquisition and its use for infrastructure operation and maintenance. Automation in Construction 14, 666–684 (2005)CrossRefGoogle Scholar
  49. 49.
    Kim, C., Son, H., Kim, H., Han, S.H.: Applicability of flash laser distance and ranging to three-dimensional spatial information acquisition and modeling on a construction site. Canadian Journal of Civil Engineering 35, 1331–1341 (2008)CrossRefGoogle Scholar
  50. 50.
    Gong, J., Caldas, C.H.: Data processing for real-time construction site spatial modeling. Automation in Construction 17, 526–535 (2008)CrossRefGoogle Scholar
  51. 51.
    Dai, F., Dong, S., Kamat, V.R., Lu, M.: Photogrammetry assisted measurement of interstory drift for rapid post-disaster building damage reconnaissance. Journal of Nondestructive Evaluation 30(3), 201–212 (2011)CrossRefGoogle Scholar
  52. 52.
    Seitz, S., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 519–526. IEEE Press (2006)Google Scholar
  53. 53.
    Furukawa, Y.: Accurate, dense, and robust multi-view stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(8), 1362–1376 (2010)CrossRefGoogle Scholar
  54. 54.
    Golparvar-Fard, M., Peña-Mora, F., Savarese, S.: D4AR – a 4-dimensional augmented reality model for automating construction progress monitoring data collection, processing and communication. Journal of Information Technology in Construction 14, 129–153 (2009)Google Scholar
  55. 55.
    Golparvar-Fard, M., Peña-Mora, F., Savarese, S.: D4AR – 4 dimensional augmented reality tools for automated remote progress tracking and support of decision-enabling tasks in the AEC/FM industry. In: 6th International Conference on Innovations in AEC (2010)Google Scholar
  56. 56.
    Ibrahim, Y.M., Lukins, T.C., Zhang, X., Trucco, E., Kaka, A.P.: Towards automated progress assessment of workpackage components in construction projects using computer vision. Advanced Engineering Informatics 23, 93–103 (2009)CrossRefGoogle Scholar
  57. 57.
    Quiñones-Rozo, C.A., Hashash, Y.M.A., Liu, L.Y.: Digital image reasoning for tracking excavation activities. Automation in Construction 17(5), 608–622 (2008)CrossRefGoogle Scholar
  58. 58.
    González-Aguilera, D., Gómez-Lahoz, J.: Dimensional Analysis of Bridges from a Single Image. Journal of Computing in Civil Engineering 23(6), 319–329 (2009)CrossRefGoogle Scholar
  59. 59.
    Dai, F., Lu, M.: Assessing the accuracy of applying photogrammetry to take geometric measurement on building products. Journal of Construction Engineering and Management 135(2), 242–250 (2010)CrossRefGoogle Scholar
  60. 60.
    Chae, S., Kano, N.: Application of location information by stereo camera images to project progress monitoring. In: 24th International Symposium on Automation and Robotics in Construction, Kochi, Kerala, India, pp. 89–92 (2007)Google Scholar
  61. 61.
    Tomasi, C., Kanade, T.: Detection and tracking of point features. Carnegie Mellon University Technical Report (1991)Google Scholar
  62. 62.
    Gupta, G., Balasubramanian, R., Rawat, M., Bhargava, R., Krishna, B.: Stereo matching for 3d building reconstruction. Advances in Computing. Communication and Control 125(3), 522–529 (2011)CrossRefGoogle Scholar
  63. 63.
    Zhu, Z., Brilakis, I.: Concrete Column Recognition in Images and Videos. Journal of Computing in Civil Engineering 24(6), 478–487 (2010)CrossRefGoogle Scholar
  64. 64.
    Yamaguchi, T., Hashimoto, S.: Fast crack detection method for large-size concrete surface images using percolation-based image processing. Machine Vision and Applications 11(5), 797–809 (2009)Google Scholar
  65. 65.
    Zhu, Z., German, S., Brilakis, I.: Visual Retrieval of Concrete Crack Properties for Automated Post-earthquake Structural Safety Evaluation. Automation in Construction 20(7), 874–883 (2011)CrossRefGoogle Scholar
  66. 66.
    Zhu, Z., Brilakis, I.: Surface Defects Detection for Architectural Concrete Quality Assessment using Visual Sensing. Special Issue in Sensors in Construction and Infrastructure Management. Journal of Information Technology in Construction 13, 86–102 (2008)Google Scholar
  67. 67.
    German, S., Brilakis, I., DesRoches, R.: Automated Detection of Exposed Reinforcement in Post-Earthquake Safety and Structural Evaluations. In: The 6th International Structural Engineering and Construction Conference (2011)Google Scholar
  68. 68.
    Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using three-dimensional textons. International Journal of Computer Vision 43, 29–44 (2001)MATHCrossRefGoogle Scholar
  69. 69.
    Schmid, C.: Constructing models for content-based image retrieval. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 39–45 (2001)Google Scholar
  70. 70.
    Koch, C., Brilakis, I.: Pothole Detection in Asphalt Pavement Images. Advanced Engineering Informatics 25(3), 507–515 (2011)CrossRefGoogle Scholar
  71. 71.
    Bouguet, J.Y.: Camera calibration toolbox for Matlab, Intel Corporation, http://www.vision.caltech.edu/bouguetj/calib_doc/
  72. 72.
    Fathi, H., Brilakis, I.: Automated sparse 3D point cloud generation of infrastructure using its distinctive visual features. Advance Engineering Informatics 25(4), 760–770 (2011)CrossRefGoogle Scholar
  73. 73.
    Rashidi, A., Dai, F., Brilakis, I., Vela, P.: Comparison of camera motion estimation methods for 3D reconstruction of infrastructure. In: 2011 ASCE International Workshop on Computing in Civil Engineering (2011)Google Scholar
  74. 74.
    Zhu, Z., Brilakis, I.: Concrete Column Recognition in Images and Videos. Journal of Computing in Civil Engineering 24(6), 478–487 (2010)CrossRefGoogle Scholar
  75. 75.
    Savarese, S., Fei-Fei, L.: 3D generic object categorization, localization and pose estimation. In: IEEE 11th International Conference on Computer Vision, pp. 1–8. IEEE Press, Brazil (2007)CrossRefGoogle Scholar
  76. 76.
    Savarese, S., Fei-Fei, L.: View Synthesis for Recognizing Unseen Poses of Object Classes. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 602–615. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  77. 77.
    Ozuysal, M., Lepetit, V., Fua, P.: Pose estimation for category specific multiview object localization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 778–785. IEEE Press, Miami (2009)CrossRefGoogle Scholar
  78. 78.
    Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 264–271 (2003)Google Scholar
  79. 79.
    Leibe, B., Schiele, B.: Scale-Invariant Object Categorization Using a Scale-Adaptive Mean-Shift Search. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 145–153. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  80. 80.
    Fei-Fei, L., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 524–531. IEEE Press (2005)Google Scholar
  81. 81.
    Felzenszwalb, P., Huttenlocher, D.: Efficient matching of pictorial structures. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 66–73. IEEE Press, South Carolina (2000)Google Scholar
  82. 82.
    Felzenszwalb, P., McAllester, D., Ramaman, D.: A Discriminatively Trained, Multiscale, Deformable Part Model. In: 26th IEEE Conference on Computer Vision and Pattern Recognition (2008)Google Scholar
  83. 83.
    Torralba, A., Murphy, K., Freeman, W.: Sharing features: efficient boosting procedures for multiclass object detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 762–769 (2004)Google Scholar
  84. 84.
    Grauman, K., Darrell, T.: The pyramid match kernel: Discriminative classification with sets of image features. In: 10th IEEE International Conference on Computer Vision, Beijing, vol. 2, pp. 1458–1465 (2005)Google Scholar
  85. 85.
    Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. Computer Vision and Image Understanding 106, 59–70 (2007)CrossRefGoogle Scholar
  86. 86.
    Schneidermanand, H., Kanade, T.: A statistical approach to 3D object detection applied to faces and cars. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 746–751 (2000)Google Scholar
  87. 87.
    Weber, M., Welling, M., Perona, P.: Unsupervised Learning of Models for Recognition. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 18–32. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  88. 88.
    Li, S.Z., Zhang, Z.: FloatBoost learning and statistical face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1112–1123 (2004)CrossRefGoogle Scholar
  89. 89.
    Brown, M., Lowe, D.G.: Unsupervised 3D Object Recognition and Reconstruction in Unordered Datasets. In: 5th International Conference on 3-D Digital Imaging and Modeling, pp. 56–63. IEEE Press, Piscataway (2005)CrossRefGoogle Scholar
  90. 90.
    Ferrari, V., Tuytelaars, T., Van Gool, L.: Simultaneous object recognition and segmentation from single or multiple model views. International Journal of Computer Vision 67(2), 159–188 (2006)CrossRefGoogle Scholar
  91. 91.
    Rothganger, F., Lazebnik, S., Schmid, C., Ponce, J.: 3D object modeling and recognition using local affine-invariant image descriptors and multi-view spatial constraints. International Journal of Computer Vision 66(3), 231–259 (2006)CrossRefGoogle Scholar
  92. 92.
    Lowe, D.G.: Local feature view clustering for 3d object recognition. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. I-682 – I-688. IEEE Press (2001)Google Scholar
  93. 93.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: British Machine Vision Conference, vol. 1, pp. 384–393 (2002)Google Scholar
  94. 94.
    Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. International Journal of Computer Vision, 128–142 (2002)Google Scholar
  95. 95.
    Yan, P., Khan, D., Shah, M.: 3d model based object class detection in an arbitrary view. In: IEEE 11th International Conference on Computer Vision, pp. 1–6. IEEE Press, Rio de Janeiro (2007)Google Scholar
  96. 96.
    Thomas, A., Ferrar, V., Leibe, B., Tuytelaars, T., Schiel, B., Van Gool, L.: Towards multi-view object class detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1589–1596 (2006)Google Scholar
  97. 97.
    Liebelt, J., Schmid, C., Schertler, K.: Viewpoint-independent object class detection using 3d feature maps. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE Press, Anchorage (2008)CrossRefGoogle Scholar
  98. 98.
    Kushal, A., Schmid, C., Ponce, J.: Flexible object models for category-level 3d object recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE Press, Minneapolis (2007)CrossRefGoogle Scholar
  99. 99.
    Hoiem, D., Rother, C., Winn, J.: 3d layoutCRF for multi-view object class recognition and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE Press, Minneapolis (2007)CrossRefGoogle Scholar
  100. 100.
    Chiu, H., Kaelbling, L., Lozano-Perez, T.: Virtual training for multi-view object class recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE Press, Minneapolis (2007)CrossRefGoogle Scholar
  101. 101.
    Li, L.J., Socher, R., Fei-Fei, L.: Towards total scene understanding: classification, annotation and segmentation in an automatic framework. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2036–2043. IEEE Press, Miami (2009)Google Scholar
  102. 102.
    Su, H., Sun, M., Fei-Fei, L., Savarese, S.: Learning a dense multi-view representation for detection, viewpoint classification and synthesis of object categories. In: 12th International Conference on Computer Vision, pp. 213–220. IEEE Press, Kyoto (2009)CrossRefGoogle Scholar
  103. 103.
    Sun, M., Su, H., Savarese, S., Fei-Fei, L.: A multi-view probabilistic model for 3d object classes. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1247–1254. IEEE Press, Miami (2009)CrossRefGoogle Scholar
  104. 104.
    Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  105. 105.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: 4th Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  106. 106.
    Tomasi, C., Kanade, T.: Detection and tracking of point features (1991)Google Scholar
  107. 107.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. Computer Vision and Image Understanding 110(3), 346–359 (2008)MATHCrossRefGoogle Scholar
  108. 108.
    Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. International Journal of Computer Vision 60(1), 63–86 (2004)CrossRefGoogle Scholar
  109. 109.
    Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building Rome in a Day. In: IEEE International Conference on Computer Vision, pp. 72–79. IEEE Press, Kyoto (2009)CrossRefGoogle Scholar
  110. 110.
    Bok, Y., Choi, D., Jeong, Y., Kweon, I.S.: Capturing Village-Level Heritages with a Hand-Held Camera-Laser Fusion Sensor. In: 12th International Conference on Computer Vision Workshops (eHeritage and Digital Art Preservation), pp. 947–954. IEEE Press, Kyoto (2009)Google Scholar
  111. 111.
    Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., Fulk, D.: The digital michelangelo project: 3D scanning of large statues. In: 27th Annual Conference on Computer Graphics and Iterative Tehniques, pp. 131–144 (2000)Google Scholar
  112. 112.
    Bernardini, F., Martin, I.M., Rushmeier, H.: High-quality texture reconstruction from multiple scans. IEEE Transactions of Visualization and Computer Graphics 7(4), 318–332 (2001)CrossRefGoogle Scholar
  113. 113.
    Shum, H.Y., Han, M., Szeliski, R.: Interactive construction of 3d models from panoramic mosaics. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 427–433. IEEE Press, Santa Barbara (1998)Google Scholar
  114. 114.
    Pollefeys, M., Van Gool, L.: From images to 3d models. Communications of the ACM 45(7), 50–55 (2002)CrossRefGoogle Scholar
  115. 115.
    Dick, A.R., Torr, P.H.S., Cipolla, R.: Modeling and interpretation of architecture from several images. International Journal of Computer Vision 60(2), 111–134 (2004)CrossRefGoogle Scholar
  116. 116.
    Teller, S., Antone, M., Bodnar, Z., Bosse, M., Coorg, S., Jethwa, M., Master, N.: Calibrated registered images of an extended urban area. International Journal of Computer Vision 53(1), 93–107 (2003)CrossRefGoogle Scholar
  117. 117.
    Stamos, I., Allen, P.K.: Geometry and texture recovery of scene of large scale. Journal of Computer Vision and Image Understanding 88(2), 94–118 (2002)CrossRefGoogle Scholar
  118. 118.
    Schindler, G., Krishnamurthy, P., Lublinerman, R., Liu, Y., Dellaert, F.: Detecting and matching re-peated patterns for automatic geo-tagging in urban environments. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–7. IEEE Press, Anchorage (2008)Google Scholar
  119. 119.
    Seitz, S., Dyer, C.: Photorealistic scene reconstruction by voxel coloring. International Journal of Computer Vision 35(2), 151–173 (1999)CrossRefGoogle Scholar
  120. 120.
    Lindeberg, T.: Scale-space theory: A basic tool for analysing structures at different scales. Journal of Applied Statistics 21(2), 224–270 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ioannis Brilakis
    • 1
  • Fei Dai
    • 1
  • Stefania-Christina Radopoulou
    • 1
  1. 1.School of Civil and Environmental EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations