Advertisement

Towards Feature-Based Situation Assessment for Airport Apron Video Surveillance

  • Ralf Dragon
  • Michele Fenzi
  • Wolf Siberski
  • Bodo Rosenhahn
  • Jörn Ostermann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7474)

Abstract

We present a feature-based surveillance pipeline which, in contrast to traditional image-based methods, allows to learn a detailed description of the observed background as well as of foreground objects. The pipeline consists of motion segmentation of feature trajectories and subsequent tracking-by-recognition with updates. Furthermore, 3D object representations are learned in order to extract the 3D object pose of a later object recognition. Finally, we show how such sufficiently reliable information is inputted into a reasoning system comparing actual and nominal condition of an airport apron. By this, automatic situation assessment becomes possible in a manageable and reliable way.

Keywords

Video Surveillance Foreground Object Reasoning System Sift Feature Structure From Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F., Stein, L.A.: Owl web ontology language reference. Tech. rep., World Wide Web Consortium (2009)Google Scholar
  2. 2.
    Bhargava, M., Chen, C.C., Ryoo, M.S., Aggarwal, J.K.: Detection of object abandonment using temporal logic. Mach. Vis. Appl., 271–281 (2009)Google Scholar
  3. 3.
    Bhat, S., Berger, M.O., Sur, F.: Visual words for 3D Reconstruction and Pose Computation. In: The First Joint 3DIM/3DPVT Conference (March 2011)Google Scholar
  4. 4.
    Boley, H., Hallmark, G., Kifer, M., Paschke, A., Polleres, A., Reynolds, D.: Rif core dialect. Tech. rep., World Wide Web Consortium (2010)Google Scholar
  5. 5.
    Brox, T., Malik, J.: Object Segmentation by Long Term Analysis of Point Trajectories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 282–295. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Buch, N., Velastin, S., Orwell, J.: A review of computer vision techniques for the analysis of urban traffic. IEEE Transactions on Intelligent Transportation Systems 12(3), 920–939 (2011)CrossRefGoogle Scholar
  7. 7.
    Calderara, S., Melli, R., Prati, A., Cucchiara, R.: Reliable background suppression for complex scenes. In: Proc. ACM Video Surveillance and Sensor Networks (VSSN), pp. 211–214 (2006)Google Scholar
  8. 8.
    Carpenter, G.A., Grossberg, S.: The art of adaptive pattern recognition by a self-organizing neural network. Computer 21(3), 77–88 (1988)CrossRefGoogle Scholar
  9. 9.
    Chen, G., Lerman, G.: Motion segmentation by scc on the hopkins 155 database. In: Proc. ICCV Workshop on Dynamical Vision (2009)Google Scholar
  10. 10.
    Chen, Y.T., Chen, C.S., Huang, C.R., Hung, Y.P.: Efficient hierarchical method for background subtraction. Pattern Recogn. 40, 2706–2715 (2007)zbMATHCrossRefGoogle Scholar
  11. 11.
    Dragon, R., Shoaib, M., Rosenhahn, B., Ostermann, J.: NF-Features – No-Feature-Features for Representing Non-textured Regions. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 128–141. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: Proc. CVPR, pp. 2790–2797 (2009)Google Scholar
  13. 13.
    Favaro, P., Vidal, R., Ravichandran, A.: A closed form solution to robust subspace estimation and clustering. In: Proc. CVPR, pp. 1801–1807 (2011)Google Scholar
  14. 14.
    Fischler, M., Bolles, R.: Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Flight Safety Foundation: Ground accident prevention ramp operational safety procedures, http://flightsafety.org/archives-and-resources/ground-accident-prevention-gap
  16. 16.
    Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern match problem. Artificial Intelligence 19(1), 17–37 (1982)CrossRefGoogle Scholar
  17. 17.
    Fradet, M., Robert, P., Perez, P.: Clustering point trajectories with various life-spans. In: Proc. CVMP, pp. 7–14 (2009)Google Scholar
  18. 18.
    Gordon, I., Lowe, D.G.: What and Where: 3D Object Recognition with Accurate Pose. In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds.) Toward Category-Level Object Recognition. LNCS, vol. 4170, pp. 67–82. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Green, M.W.: The appropriate and effective use of security technologies in U.S. schools. Tech. rep., Sandia National Laboratories (September 1999)Google Scholar
  20. 20.
    Hsiao, E., Collet, A., Hebert, M.: Making Specific Features Less Discriminative to Improve Point-Based 3D Object Recognition. In: CVPR, pp. 2653–2660 (2010)Google Scholar
  21. 21.
    Irschara, A., Zach, C., Frahm, J.M., Bischof, H.: From Structure-from-Motion Point Clouds to Fast Location Recognition. In: CVPR, pp. 2599–2606. IEEE (2009)Google Scholar
  22. 22.
    Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: An Accurate O(n) Solution to the PnP Problem. IJCV 81, 155–166 (2009)CrossRefGoogle Scholar
  23. 23.
    Li, Y., Snavely, N., Huttenlocher, D.P.: Location Recognition Using Prioritized Feature Matching. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 791–804. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60, 91–110 (2004)CrossRefGoogle Scholar
  25. 25.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image and Vision Computing (2004)Google Scholar
  26. 26.
    Mikolajcyk, K., Schmid, C.: An affine invariant interest point detector. In: Proc. ICCV (2002)Google Scholar
  27. 27.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  28. 28.
    Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: Proc. NIPS, pp. 849–856 (2001)Google Scholar
  29. 29.
    Park, Y., Lepetit, V., Woo, W.: Multiple 3D Object tracking for augmented reality. In: ISMAR, pp. 117–120 (September 2008)Google Scholar
  30. 30.
    Parks, D.H., Fel, S.S.: Evaluation of background subtraction algorithms with post-processing. In: AVSS, pp. 192–199 (2008)Google Scholar
  31. 31.
    Radke, R.J., Andra, S., Al-Kofahi, O., Roysam, B.: Image change detection algorithms: a systematic survey. IEEE Transactions on Image Processing 14(3), 294–307 (2005)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Rothganger, F., Lazebnik, S., Schmid, C., Ponce, J.: 3d object modeling and recognition using local affine-invariant image descriptors and multi-view spatial constraints. IJCV 66(3), 231–259 (2006)CrossRefGoogle Scholar
  33. 33.
    Russell, S., Norvig, P.: Inference in First-Order Logic. In: Artificial Intelligence: A Modern Approach, ch. 9. Prentice Hall (2009)Google Scholar
  34. 34.
    Setiawan, N.A., Seok-Ju, H., Jang-Woon, K., Chil-Woo, L.: Gaussian Mixture Model in Improved HLS Color Space for Human Silhouette Extraction. In: Pan, Z., Cheok, D.A.D., Haller, M., Lau, R., Saito, H., Liang, R. (eds.) ICAT 2006. LNCS, vol. 4282, pp. 732–741. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  35. 35.
    Sheikh, Y., Javed, O., Kanade, T.: Background subtraction for freely moving cameras. In: Proc. ICCV, pp. 1219–1225 (2009)Google Scholar
  36. 36.
    Shi, J., Tomasi, C.: Good features to track. In: Proc. CVPR, pp. 593–600 (June 1994)Google Scholar
  37. 37.
    Shoaib, M., Dragon, R., Ostermann, J.: View-invariant fall detection for elderly in real home environment. In: PSIVT (November 2010)Google Scholar
  38. 38.
    Sivic, J., Schaffalitzky, F., Zisserman, A.: Object level grouping for video shots. IJCV 67(2), 189–210 (2006)CrossRefGoogle Scholar
  39. 39.
    Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: CVPR, pp. 2246–2252 (1999)Google Scholar
  40. 40.
    Weinzaepfel, P., Jgou, H., Prez, P.: Reconstructing an image from its local descriptors. In: CVPR (2011)Google Scholar
  41. 41.
    Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: Real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 780–785 (1997)CrossRefGoogle Scholar
  42. 42.
    Yu, J., Chin, T.J., Suter, D.: A global optimization approach to robust multi-model fitting. In: Proc. CVPR (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ralf Dragon
    • 1
  • Michele Fenzi
    • 1
  • Wolf Siberski
    • 2
  • Bodo Rosenhahn
    • 1
  • Jörn Ostermann
    • 1
  1. 1.Institut für InformationsverarbeitungGermany
  2. 2.L3SLeibniz Universität HannoverGermany

Personalised recommendations