Advertisement

Optical Remote Sensing

  • Joseph L. AwangeEmail author
  • John B. Kyalo Kiema
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

There are a large variety of systems for collecting remotely sensed data in operation today.

Keywords

Global Navigation Satellite System Global Navigation Satellite System LiDAR Data Digital Surface Model Fine Spatial Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ackermann F (1999) Airborne laser scanning—present status and future expectations. ISPRS J Photogramm Remote Sens 54:64–67CrossRefGoogle Scholar
  2. Alharthy A, Bethel J (2002) Heuristic filtering and 3D feature extraction from LIDAR data. In: International Archives of Photogrammetry and Remote Sensing (IAPRS), Graz, Austria, vol XXXIV, Part 3A:29–34Google Scholar
  3. Aplin P, Atkinson PM, Curran PJ (1997) Fine Spatial resolution satellite sensors for the next decade. Int J Remote Sens 18:3873–3881CrossRefGoogle Scholar
  4. Bähr H-P, Vögtle T (eds) (1998) Erderkundungssatelliten und ihre Produkte. Digitale Bildverarbeitung, vol 3. Wichmann Verlag, Heidelberg, pp 29–43Google Scholar
  5. Baltsavias E (1999) A comparison between photogrammetry and laser scanning. ISPRS J Photogramm Remote Sens 54:83–94CrossRefGoogle Scholar
  6. Brunn A, Weidner U (1997) Extracting buildings from digital surface models. Int Arch Photogramm Remote Sens 32:27–34Google Scholar
  7. Campbell JB (2007) Introduction to remote sensing, 4th edn. Guilford Press, New YorkGoogle Scholar
  8. Clode S, Rottensteinerb F, Kootsookosc P, Zelniker E (2007) Detection and vectorization of roads from LiDAR data. Photogramm Eng Remote Sens 73:517–535Google Scholar
  9. Congalton R, Green K (2009) Assessing the accuracy of remotely sensed data: principles and practices. Taylor & Francis Group, Boca RatonGoogle Scholar
  10. Devillers R, Jeansoulin R (eds) (2006) Fundamentals of spatial data quality. ISTE, LondonGoogle Scholar
  11. Forlani G, Nardinocchi C, Scaioni M, Zingaretti P (2006) Complete classification of raw LiDAR data and 3D reconstruction of buildings. Pattern Anal Appl 8:357–374CrossRefGoogle Scholar
  12. Forshaw MRB, Haskell A, Miller PF, Stanley DJ, Townshend JRG (1983) Spatial resolution of remotely sensed imagery: a review paper. Int J Remote Sens 4(3):497–520CrossRefGoogle Scholar
  13. Fritz LW (1996) The Era of commercial earth observation satellites. Photogramm Eng Remote Sens 1:39–45Google Scholar
  14. Groot R, McLaughlin J (eds) (2000) Geospatial data infrastructure: concepts, cases and good practice. Oxford University Press, New YorkGoogle Scholar
  15. Guelman M, Ortenberg F (2009) Small satellite’s role in future hyperspectral earth observation missions. Acta Astronaut 64:1252–1263CrossRefGoogle Scholar
  16. Haala N, Brenner C (1999) Extraction of buildings and trees in urban environments. ISPRS J Photogramm Remote Sens 54:130–137CrossRefGoogle Scholar
  17. Ho C, Robinson A, Millerm D, Davis M (2005) Overview of sensors and needs for environmental monitoring. Sensors 5:4–37CrossRefGoogle Scholar
  18. Jensen JR (2005) Introductory digital image processing: a remote sensing perspective, 3rd edn. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  19. Joseph G (2000) How well do we understand earth observation electro-optical sensor parameters? ISPRS J Photogramm Remote Sens 55:9–12CrossRefGoogle Scholar
  20. Kiema JBK (2001) Multi-source data fusion and image compression in urban remote sensing. Doctor of engineering. Dissertation, University of Karlsruhe. ISBN3-8265-9312-X. Shaker Verlag, pp 130Google Scholar
  21. Kokkas N (2005) City modeling and building reconstruction with Socet Set v.5.2 BAE Systems. Customer presentation at the 2005 GXP regional user conference. Cambridge, England, pp 19–21Google Scholar
  22. Konecny G (2003) Geoinformation: Remote sensing, photogrammetry, Geographic Information Systems. Taylor and Francis, LondonGoogle Scholar
  23. Kramer HJ, Cracknell A (2008) An overview of small satellites. Int J Remote Sens 29:4285–4337CrossRefGoogle Scholar
  24. Kumi-Boateng B (2012) A spatio-temporal based estimation of vegetation changes in the Tarkwa mining area of Ghana. Doctor of philosophy. Dissertation, University of Mines and Technology, Ghana, pp 165Google Scholar
  25. Kussul N, Shelestov A, Skakun S (2009) Grid and sensor web technologies for environmental monitoring. Earth Sci Inform 2(1–2):37–51CrossRefGoogle Scholar
  26. Lee DH, Lee KM, Lee SU (2008) Fusion of LiDAR and imagery for reliable building extraction. Photogramm Eng Remote Sens 74:215–225Google Scholar
  27. Liu X (2008) Airborne LiDAR for DEM generation: some critical issues. Prog Phys Geogr 32(1):31–49. doi: 10.1177/0309133308089496 CrossRefGoogle Scholar
  28. Ma R (2005) DEM generation and building detection from lidar data. Photogramm Eng Remote Sens 71(7):847–854Google Scholar
  29. McCoy R (2005) Field methods in remote sensing. The Guilford Press, New York 158pGoogle Scholar
  30. Miliaresis G, Kokkas N (2007) Segmentation and object-based classification for the extraction of the building class from LiDAR DEMs. Comput Geosci 33:1076–1087CrossRefGoogle Scholar
  31. Murai S (2004) Remote sensing and GIS courses—distance education, Japan International Cooperation Agency (JICA)-NetGoogle Scholar
  32. Phinn SR (1998) A framework for selecting appropriate remote sensed data dimensions for environmental monitoring and management. Int J Remote Sens 19:3457–3463CrossRefGoogle Scholar
  33. Popescue SC, Wynne RH, Nelson RF (2003) Measuring individual tree crown diameter with LiDAR and assessing its influence on estimating forest volume and biomass. Can J Remote Sens 29:564–577CrossRefGoogle Scholar
  34. Porter J, Arzberger P, Braun H, Brynat P, Gage S, Hansen T, Lin C, Lin F, Kratz T, Michener W, Shapiro S, Williams T (2005) Wireless sensor networks for ecology. BioScience 55:561–572CrossRefGoogle Scholar
  35. Quattrochi DA, Goodchild MF (1997) Scale in remote sensing and GIS. Lewis Publishers, New YorkGoogle Scholar
  36. Ramapriyan HK (2002) Satellite imagery in earth science applications. In: Castelli V, Bergman LD (eds) Image databases search and retrieval of digital imagery. Wiley, ChichesterGoogle Scholar
  37. Renslow M, Greenfield P, Guay T (2000) Evaluation of multi-return LiDAR for forestry applications. Project report for the inventory and monitoring steering committee, RSAC-2060/4810-LSP-0001-RPT1Google Scholar
  38. Schenk T, Csatho B (2002) Fusion of lidar data and aerial imagery for a more complete surface description, Archives of photogrammetryGoogle Scholar
  39. Schiewe J (1998) Experiences from the MOMS-02-Project for future developments. Intl Arch Photogramm Remote Sens 32:533–539Google Scholar
  40. Secord J, Zakhor A (2007) Tree detection in urban regions using aerial lidar and image data. IEEE Geosci Remote Sens Lett 4:196–200CrossRefGoogle Scholar
  41. Sohn G, Dowman I (2005) Data fusion of high-resolution satellite imagery and LiDAR data for automatic building extraction. ISPRS J Photogramm Remote Sens 62(1):43–63CrossRefGoogle Scholar
  42. Voss M, Sugumaran R (2008) Seasonal effect on tree species classification in an urban environment using hyperspectral data, LiDAR, and an object-oriented approach. Sensors 8:3020–3036CrossRefGoogle Scholar
  43. Webster TL, Forbes DL, Dickie S, Shreenan R (2004) Using topographic LiDAR to map flood risk from storm-surge events for Charlottetown, Prince Edward Island, Canada. Can J Remote Sens 30:64–76CrossRefGoogle Scholar
  44. Weng Q (2010) Remote sensing and GIS integration: theories, methods, and applications. McGraw-Hill, New York, p 416Google Scholar
  45. Xue Y, Li Y, Guang J, Zhang X, Guo J (2008) Small satellite remote sensing applications—history, current and future. Int J Remote Sens 29:4339–4372CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Spatial SciencesCurtin University of TechnologyPerthAustralia
  2. 2.Karlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Kyoto UniversityKyotoJapan
  4. 4.School of EnvironmentMaseno UniversityKisumuKenya
  5. 5.Geospatial and Space TechnologyUniversity of NairobiNairobiKenya

Personalised recommendations