Complete SAT Solver Based on Set Theory

  • Wensheng Guo
  • Guowu Yang
  • Qianqi Le
  • William N. N. Hung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7473)


SAT problem is a NP-complete. Many SAT benchmarks that come from the different real life SAT problems are proposed to verify the performance of solvers. Our research focuses on the Model RB benchmark which can be mapped by the coloring problem and others. We propose a translating method based on set for Model RB instances of CNF formulas, and a complete search algorithm. We use the weight of clauses based on the set to determine the order of the search. The results show our solver has the best runtime for the mostly instances and is comparable to the best SAT solvers.


SAT Set Exclusive Set Relative Set 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Larrabee, T.: Test pattern generation using Boolean Satisfiability. IEEE Trans. CAD 11(1), 4–15 (1992)Google Scholar
  2. 2.
    Wood, R.G., Rutenbar, R.A.: FPGA routing and routability estimation via Boolean satisfiability. In: International Symposium on Field-programmable Gate Arrays, Monterey, California, United States, pp. 119–125. ACM, New York (1997)Google Scholar
  3. 3.
    Biere, A., et al.: Symbolic Model Checking using SAT procedures instead of BDDs. In: Proc. Design Automation Conference ACM/IEEE, pp. 317–320 (1999)Google Scholar
  4. 4.
    Bjesse, P., Leonard, T., Mokkedem, A.: Finding Bugs in an Alpha Microprocessor Using Satisfiability Solvers. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 454–464. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Song, X., et al.: Board-Level Multiterminal Net Assignment for the Partial Cross-Bar Architecture. IEEE Trans. VLSI Systems 11(3), 511–514 (2003)CrossRefGoogle Scholar
  6. 6.
    Hung, W.N.N., Narasimhan, N.: Reference Model Based RTL Verification: An Integrated Approach. In: Proc. IEEE International High Level Design Validation and Test Workshop (HLDVT), pp. 9–13. IEEE (November 2004)Google Scholar
  7. 7.
    Hung, W.N.N., et al.: Segmented channel routability via satisfiability. ACM Transactions on Design Automation of Electronic Systems 9(4), 517–528 (2004a)CrossRefGoogle Scholar
  8. 8.
    Hung, W.N.N., et al.: Routability Checking for Three-Dimensional Architectures. IEEE Trans. VLSI Systems 12(12), 1398–1401 (2004b)CrossRefGoogle Scholar
  9. 9.
    Hung, W.N.N., et al.: Optimal Synthesis of Multiple Output Boolean Functions using a Set of Quantum Gates by Symbolic Reachability Analysis. IEEE Trans. CAD 25(9), 1652–1663 (2006)Google Scholar
  10. 10.
    He, F., et al.: A satisfiability formulation for FPGA routing with pin rearrangements. International Journal of Electronics 94(9), 857–868 (2007)CrossRefGoogle Scholar
  11. 11.
    Hung, W.N.N., et al.: Defect Tolerant CMOL Cell Assignment via Satisfiability. IEEE Sensors Journal 8(6), 823–830 (2008)CrossRefGoogle Scholar
  12. 12.
    Han, H., Somenzi, F., Jin, H.: Making Deduction More Effective in SAT Solvers. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1271–1284 (2010)Google Scholar
  13. 13.
    Audemard, G., Katsirelos, G., Simon, L.: A restriction of extended resolution for clause learning SAT solvers. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence, AAAI (2010)Google Scholar
  14. 14.
    Franco, J., Paull, M.: Probabilistic analysis of the Davis Putnam procedure for solving the satisfiability problem. Discrete Applied Mathematics 5, 77–87 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Mendonca, M., Wasowski, A., Czarnecki, K.: SAT-based Analysis of Feature Models is Easy. In: Proceedings of the International Software Product Line Conference (SPLC). Software Engineering Institute, Carnegie Mellon University (2009)Google Scholar
  16. 16.
    Kemper, S.: SAT-based verification for timed component connectors. Electronic Notes in Theoretical Computer Science (ENTCS) 255, 103–118 (2009)CrossRefGoogle Scholar
  17. 17.
    Zhou, M., He, F., Gu, M.: An Efficient Resolution Based Algorithm for SAT. In: 2011 Fifth International Symposium on Theoretical Aspects of Software Engineering (TASE), pp. 60–67 (2011)Google Scholar
  18. 18.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7, 201–215 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Comms. ACM 5, 394–397 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Xu, K., Li, W.: Exact Phase Transitions in Random Constraint Satisfaction Problems. Journal of Artificial Intelligence Research 12, 93–103 (2000)MathSciNetzbMATHGoogle Scholar
  21. 21.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Wensheng Guo
    • 1
  • Guowu Yang
    • 1
  • Qianqi Le
    • 1
  • William N. N. Hung
    • 2
  1. 1.University of Electronic Science and TechnologyChengduChina
  2. 2.Synopsys Inc.Mountain ViewUSA

Personalised recommendations