Advertisement

Unaligned Rebound Attack: Application to Keccak

  • Alexandre Duc
  • Jian Guo
  • Thomas Peyrin
  • Lei Wei
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7549)

Abstract

We analyze the internal permutations of Keccak, one of the NIST SHA-3 competition finalists, in regard to differential properties. By carefully studying the elements composing those permutations, we are able to derive most of the best known differential paths for up to 5 rounds. We use these differential paths in a rebound attack setting and adapt this powerful freedom degrees utilization in order to derive distinguishers for up to 8 rounds of the internal permutations of the submitted version of Keccak. The complexity of the 8 round distinguisher is 2491.47. Our results have been implemented and verified experimentally on a small version of Keccak.

Keywords

Keccak SHA-3 hash function differential cryptanalysis rebound attack 

References

  1. 1.
    Abe, M. (ed.): ASIACRYPT 2010. LNCS, vol. 6477. Springer, Heidelberg (2010)MATHGoogle Scholar
  2. 2.
    Aumasson, J.-P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for the core functions of Luffa and Hamsi. Presented at the Rump Session of CHES 2009 (2009)Google Scholar
  3. 3.
    Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing Efficient Protocols. In: CCS, pp. 62–73. ACM (1993)Google Scholar
  4. 4.
    Bernstein, D.J.: Second preimages for 6 (7? (8??)) rounds of Keccak? (November 2010), http://ehash.iaik.tugraz.at/uploads/6/65/NIST-mailing-list_Bernstein-Daemen.txt
  5. 5.
    Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In: ECRYPT Hash Workshop 2007 (May 2007)Google Scholar
  6. 6.
    Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On alignment in Keccak. In: ECRYPT II Hash Workshop (2011)Google Scholar
  7. 7.
    Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The KECCAK Reference. Submission to NIST (Round 3) (2011)Google Scholar
  8. 8.
    Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The KECCAK SHA-3 Submission. Submission to NIST (Round 3) (2011)Google Scholar
  9. 9.
    Boura, C., Canteaut, A., De Cannière, C.: Higher-Order Differential Properties of Keccak and Luffa. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 252–269. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Duc, A., Guo, J., Peyrin, T., Wei, L.: Unaligned Rebound Attack - Application to Keccak. Cryptology ePrint Archive, Report 2011/420 (2011), http://eprint.iacr.org/
  11. 11.
    Gilbert, H., Peyrin, T.: Super-Sbox Cryptanalysis: Improved Attacks for AES-Like Permutations. In: Hong and Iwata [12], pp. 365–383Google Scholar
  12. 12.
    Hong, S., Iwata, T. (eds.): FSE 2010. LNCS, vol. 6147. Springer, Heidelberg (2010)Google Scholar
  13. 13.
    Khovratovich, D., Naya-Plasencia, M., Röck, A., Schläffer, M.: Cryptanalysis of Luffa v2 Components. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 388–409. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Khovratovich, D., Nikolic, I., Rechberger, C.: Rotational Rebound Attacks on Reduced Skein. In: Abe [1], pp. 1–19Google Scholar
  15. 15.
    Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound Distinguishers: Results on the Full Whirlpool Compression Function. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved Cryptanalysis of the Reduced Grøstl Compression Function, ECHO Permutation and AES Block Cipher. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 16–35. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Morawiecki, P., Srebrny, M.: A SAT-based preimage analysis of reduced Keccak hash functions. Presented at Second SHA-3 Candidate Conference, Santa Barbara (2010)Google Scholar
  19. 19.
    Naya-Plasencia, M.: How to Improve Rebound Attacks. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 188–205. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Naya-Plasencia, M., Röck, A., Meier, W.: Practical Analysis of Reduced-Round Keccak. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107, pp. 236–254. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Rijmen, V., Toz, D., Varici, K.: Rebound Attack on Reduced-Round Versions of JH. In: Hong and Iwata [12], pp. 286–303Google Scholar
  22. 22.
    Sasaki, Y., Li, Y., Wang, L., Sakiyama, K., Ohta, K.: Non-full-active Super-Sbox Analysis: Applications to ECHO and Grøstl. In: Abe [1], pp. 38–55Google Scholar
  23. 23.
    Keccak team. Keccak Crunchy Crypto Collision and Pre-image Contest (2011), http://keccak.noekeon.org/crunchy_contest.html
  24. 24.
    Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alexandre Duc
    • 1
  • Jian Guo
    • 2
  • Thomas Peyrin
    • 3
  • Lei Wei
    • 3
  1. 1.Ecole Polytechnique Fédérale de LausanneSwizerland
  2. 2.Institute for Infocomm ResearchSingapore
  3. 3.Nanyang Technological UniversitySingapore

Personalised recommendations