Advertisement

MailOfMine – Analyzing Mail Messages for Mining Artful Collaborative Processes

  • Claudio Di Ciccio
  • Massimo Mecella
  • Monica Scannapieco
  • Diego Zardetto
  • Tiziana Catarci
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 116)

Abstract

Artful processes are informal processes typically carried out by those people whose work is mental rather than physical (managers, professors, researchers, engineers, etc.), the so called “knowledge workers”. In this paper we propose the MailOfMine approach, to automatically build, on top of a collection of email messages, a set of workflow models that represent the artful processes laying behind the knowledge workers activities.

Keywords

process mining email analysis object matching visual representation of processes knowledge workers artful processes declarative workflows 

References

  1. 1.
    Warren, P., Kings, N., Thurlow, I., Davies, J., Buerger, T., Simperl, E., Ruiz, C., Gomez-Perez, J.M., Ermolayev, V., Ghani, R., Tilly, M., Bösser, T., Imtiaz, A.: Improving knowledge worker productivity - the Active integrated approach. BT Technologiy Journal 26(2), 165–176 (2009)Google Scholar
  2. 2.
    Catarci, T., Dix, A., Katifori, A., Lepouras, G., Poggi, A.: Task-Centred Information Management. In: Thanos, C., Borri, F., Candela, L. (eds.) Digital Libraries: R&D. LNCS, vol. 4877, pp. 197–206. Springer, Heidelberg (2007)Google Scholar
  3. 3.
    Innocenti, P., Ross, S., Maceciuvite, E., Wilson, T., Ludwig, J., Pempe, W.: Assessing digital preservation frameworks: the approach of the SHAMAN project. In: Chbeir, R., Badr, Y., Kapetanios, E., Traina, A.J.M. (eds.) MEDES, pp. 412–416. ACM (2009)Google Scholar
  4. 4.
    Heutelbeck, D.: Preservation of enterprise engineering processes by social collaboration software. Personal Communication (2011)Google Scholar
  5. 5.
    Smart Vortex Consortium: Smart Vortex – Management and analysis of massive data streams to support large-scale collaborative engineering projects. FP7 IP ProjectGoogle Scholar
  6. 6.
    De Giacomo, G., Mecella, M.: On the representation of constraints for declarative models. Private communication (April 2010)Google Scholar
  7. 7.
    Chomsky, N., Miller, G.A.: Finite state languages. Information and Control 1(2), 91–112 (1958), The equivalence between regular grammars and FSAs is demonstrated hereGoogle Scholar
  8. 8.
    Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev. 3, 114–125 (1959); A comprehensive study on ASFs: it contains the demonstration of the equivalence between ASFDs and ASFNDsGoogle Scholar
  9. 9.
    Gisburg, S., Rose, G.F.: Preservation of languages by transducers. Information and Control 9(2), 153–176 (1966); Many closure properties about regular languages are demonstrated hereGoogle Scholar
  10. 10.
    Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declarative process models. In: CIDM, pp. 192–199. IEEE (2011)Google Scholar
  11. 11.
    de Carvalho, V.R., Cohen, W.W.: Learning to extract signature and reply lines from email. In: CEAS (2004)Google Scholar
  12. 12.
    Myers, E.W.: An O(ND) difference algorithm and its variations. Algorithmica 1(2), 251–266 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Searle, J.: A Taxonomy of Illocutionary Acts, pp. 334–369. University of Minnesota Press, Minneapolis (1975)Google Scholar
  14. 14.
    Cohen, W.W., Carvalho, V.R., Mitchell, T.M.: Learning to classify email into “speech acts”. In: EMNLP, pp. 309–316. ACL (2004)Google Scholar
  15. 15.
    Weigand, H., de Moor, A.: Workflow analysis with communication norms. Data Knowl. Eng. 47(3), 349–369 (2003)CrossRefGoogle Scholar
  16. 16.
    Di Ciccio, C., Mecella, M.: Mining Constraints for Artful Processes. In: Abramowicz, W., Kriksciuniene, D., Sakalauskas, V. (eds.) BIS 2012. LNBIP, vol. 117, pp. 11–23. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Di Ciccio, C., Mecella, M.: MINERful, a mining algorithm for declarative process constraints in MailOfMine. Technical report, Dipartimento di Ingegneria Informatica, Automatica e Gestionale “Antonio Ruberti” – SAPIENZA, Università di Roma (2012)Google Scholar
  18. 18.
    Zardetto, D., Scannapieco, M., Catarci, T.: Effective automated object matching. In: Li, F., Moro, M.M., Ghandeharizadeh, S., Haritsa, J.R., Weikum, G., Carey, M.J., Casati, F., Chang, E.Y., Manolescu, I., Mehrotra, S., Dayal, U., Tsotras, V.J. (eds.) ICDE, pp. 757–768. IEEE (2010)Google Scholar
  19. 19.
    Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A survey. IEEE Transactions on Knowledge and Data Engineering 19, 1–16 (2007)CrossRefGoogle Scholar
  20. 20.
    Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM Press/Addison-Wesley (1999)Google Scholar
  21. 21.
    Salton, G.: Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer. Addison-Wesley (1989)Google Scholar
  22. 22.
    van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing between flexibility and support. Computer Science - R&D 23(2), 99–113 (2009)Google Scholar
  23. 23.
    Hotho, A., Nürnberger, A., Paaß, G.: A brief survey of text mining. LDV Forum - GLDV Journal for Computational Linguistics and Language Technology 20(1), 19–62 (2005)Google Scholar
  24. 24.
    Berry, M.W., Castellanos, M. (eds.): Survey of Text Mining II: Clustering, Classification, and Retrieval. Springer (September 2007)Google Scholar
  25. 25.
    Sakurai, S., Suyama, A.: An e-mail analysis method based on text mining techniques. Appl. Soft Comput. 6(1), 62–71 (2005)CrossRefGoogle Scholar
  26. 26.
    Sakurai, S., Ichimura, Y., Suyama, A., Orihara, R.: Acquisition of a knowledge dictionary for a text mining system using an inductive learning method. In: Proceedings of IJCAI 2001 Workshop on Text Learning: Beyond Supervision, pp. 45–52 (2001)Google Scholar
  27. 27.
    van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer (2011)Google Scholar
  28. 28.
    van der Aalst, W.M.P.: The application of petri nets to workflow management. Journal of Circuits, Systems, and Computers 8(1), 21–66 (1998)CrossRefGoogle Scholar
  29. 29.
    van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Rozinat, A., Verbeek, E., Weijters, T.: Prom: The process mining toolkit. In: de Medeiros, A.K.A., Weber, B. (eds.) BPM (Demos). CEUR Workshop Proceedings, vol. 489 (2009), CEUR-WS.org
  30. 30.
    Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow Logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–483. Springer, Heidelberg (1998)Google Scholar
  31. 31.
    van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  32. 32.
    Wen, L., van der Aalst, W.M.P., Wang, J., Sun, J.: Mining process models with non-free-choice constructs. Data Min. Knowl. Discov. 15(2), 145–180 (2007)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Weijters, A., van der Aalst, W.: Rediscovering workflow models from event-based data using little thumb. Integrated Computer-Aided Engineering 10, 2003 (2001)Google Scholar
  34. 34.
    Medeiros, A.K., Weijters, A.J., Aalst, W.M.: Genetic process mining: an experimental evaluation. Data Min. Knowl. Discov. 14(2), 245–304 (2007)MathSciNetCrossRefGoogle Scholar
  35. 35.
    van der Aalst, W., Rubin, V., Verbeek, H., van Dongen, B., Kindler, E., Gnther, C.: Process mining: a two-step approach to balance between underfitting and overfitting. Software and Systems Modeling 9, 87–111 (2010), doi:10.1007/s10270-008-0106-zCrossRefGoogle Scholar
  36. 36.
    van der Aalst, W.M.P., Nikolov, A.: Mining e-mail messages: Uncovering interaction patterns and processes using e-mail logs. IJIIT 4(3), 27–45 (2008)Google Scholar
  37. 37.
    ter Hofstede, A.M., van der Aalst, W.M.P., Adamns, M., Russell, N. (eds.): Modern Business Process Automation: YAWL and its Support Environment. Springer (2010)Google Scholar
  38. 38.
    Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (2001)Google Scholar
  39. 39.
    van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a Truly Declarative Service Flow Language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 1–23. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  40. 40.
    Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business processes management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  41. 41.
    Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: Full support for loosely-structured processes. In: EDOC, pp. 287–300. IEEE Computer Society (2007)Google Scholar
  42. 42.
    Pesic, M., Schonenberg, M.H., Sidorova, N., van der Aalst, W.M.P.: Constraint-Based Workflow Models: Change Made Easy. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803, pp. 77–94. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  43. 43.
    Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting inductive logic programming techniques for declarative process mining. T. Petri Nets and Other Models of Concurrency 2, 278–295 (2009)CrossRefGoogle Scholar
  44. 44.
    Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable agent interaction in abductive logic programming: The sciff framework. ACM Trans. Comput. Log. 9(4) (2008)Google Scholar
  45. 45.
    Morera-Mesa, A., Di Ciccio, C.: On the mining of processes out of open source development mailing lists. Private Communication (June 2011)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Claudio Di Ciccio
    • 1
  • Massimo Mecella
    • 1
  • Monica Scannapieco
    • 2
  • Diego Zardetto
    • 2
  • Tiziana Catarci
    • 1
  1. 1.Dipartimento di Ingegneria Informatica, Automatica e Gestionale ANTONIO RUBERTISAPIENZA – Università di RomaRomaItaly
  2. 2.Istituto Nazionale di StatisticaRomaItaly

Personalised recommendations