Abstract

Workflows are an increasingly common way of representing and sharing complex in silico analytical methodologies. Workflow authoring systems such as Taverna and Galaxy precisely capture the services and service connections created by domain experts, and these workflows are then shared through repositories like myExperiment, which encourages users to discover, reuse, and repurpose them. Repurposing, however, is not trivial: ostensibly straightforward modifications are quite troublesome in practice and workflows tend not to be well-annotated at any level of granularity. As such, a "concrete" workflow, where the component services are explicitly declared, may not be a particularly effective way of sharing these analytical methodologies. Here we propose, and demonstrate, that a domain model for a given concept, formalized in OWL, can be used as an abstract workflow model, which can be automatically converted into a context-specific, concrete, self-annotating workflow.

Keywords

OWL-DL ontologies workflow workflow modeling SPARQL Semantic Web Semantic Web Services 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Garijo, D., Gil, Y.: A New Approach for Publishing Workflows: Abstractions, Standards, and Linked Data. To appear in Proceedings of the Sixth Workshop on Workflows in Support of Large-Scale Science 2011, Held in Conjunction with SC 2011, Seattle, Washington (2011)Google Scholar
  2. 2.
    Goble, C.A., Bhagat, J., Aleksejevs, S., Cruickshank, D., Michaelides, D., Newman, D., Borkum, M., Bechhofer, S., Roos, M., Li, P., De Roure, D.: myExperiment: a repository and social network for the sharing of bioinformatics workflows. Nucleic Acids Research 38, W677–W682 (2010)CrossRefGoogle Scholar
  3. 3.
    Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T., Glover, K., Pocock, M.R., Wipat, A., Li, P.: Taverna: a tool for the composition and enactment of bioinformatics workflows. Bioinformatics 20, 3045–3054 (2004)CrossRefGoogle Scholar
  4. 4.
    Goecks, J., Nekrutenko, A., Taylor, J.: Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biology 11, R86 (2010)Google Scholar
  5. 5.
    Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Analysis of Web Services Composition Languages: The Case of BPEL4WS. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 200–215. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Goderis, A., Sattler, U., Lord, P., Goble, C.A.: Seven Bottlenecks to Workflow Reuse and Repurposing. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 323–337. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Wilkinson, M., Links, M.: BioMOBY: an open source biological web services proposal. Briefings in Bioinformatics 3, 331–341 (2002)CrossRefGoogle Scholar
  8. 8.
    Wilkinson, M.D., Senger, M., Kawas, E., Bruskiewich, R., Gouzy, J., et al.: Interoperability with Moby 1.0–it’s better than sharing your toothbrush! Briefings in Bioinformatics 9, 220–231 (2008)CrossRefGoogle Scholar
  9. 9.
    Lord, P., Bechhofer, S., Wilkinson, M.D., Schiltz, G., Gessler, D., Hull, D., Goble, C.A., Stein, L.: Applying Semantic Web Services to Bioinformatics: Experiences Gained, Lessons Learnt. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 350–364. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Reich, M., Liefeld, T., Gould, J., Lerner, J., Tamayo, P., Mesirov, J.: GenePattern 2.0. Nature Genetics 38, 500–501 (2006)CrossRefGoogle Scholar
  11. 11.
    Gil, Y., Ratnakar, V., Kim, J., González-Calero, P.A., Groth, P.T., Moody, J., Deelman, E.: Wings: Intelligent Workflow-Based Design of Computational Experiments. To appear in IEEE Intelligent Systems (2011)Google Scholar
  12. 12.
    Gil, Y., Groth, P., Ratnakar, V., Fritz, C.: Expressive Reusable Workflow Templates. In: Proc. 5th IEEE Int’l Conf. E-Science, pp. 344–351. IEEE Press (2009)Google Scholar
  13. 13.
    Hauder, M., Gil, Y., Sethi, R., Liu, Y., Jo, H.: Making Data Analysis Expertise Broadly Accessible through Workflows. To appear in Proceedings of the Sixth Workshop on Workflows in Support of Large-Scale Science, Held in Conjunction with SC 2011, Seattle, Washington (2011)Google Scholar
  14. 14.
    Wilkinson, M.D., Vandervalk, B., McCarthy, L.: The Semantic Automated Discovery and Integration (SADI) Web service Design-Pattern, API and Reference Implementation. Journal of Biomedical Semantics 2, 8 (2011)Google Scholar
  15. 15.
    Vandervalk, B.P., McCarthy, E.L., Wilkinson, M.D.: SHARE: A Semantic Web Query Engine for Bioinformatics. In: Gómez-Pérez, A., Yu, Y., Ding, Y. (eds.) ASWC 2009. LNCS, vol. 5926, pp. 367–369. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Gordon, P.M.K., Soliman, M.A., Bose, P., Trinh, Q., Sensen, C.W., Riabowol, K.: Interspecies data mining to predict novel ING-protein interactions in human. BMC Genomics 9, 426 (2008)CrossRefGoogle Scholar
  17. 17.
    BioHackaton (2011), http://2011.biohackathon.org/
  18. 18.
  19. 19.
  20. 20.
    ODP - semanticscience - SIO Ontology Design Principles, Scientific Knowledge Discovery, http://code.google.com/p/semanticscience/wiki/ODP
  21. 21.
    Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: Full Support for Loosely-Structured Processes. In: 11th IEEE International Enterprise Distributed Object Computing Conference (EDOC 2007), p. 287 (2007)Google Scholar
  22. 22.
    Lamprecht, A.-L., Naujokat, S., Margaria, T., Steffen, B.: Synthesis-Based Loose Programming. In: 2010 Seventh International Conference on the Quality of Information and Communications Technology, pp. 262–267 (2010)Google Scholar
  23. 23.
    Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.: Declarative Specification and Verification of Service Choreographies. ACM Transactions on the Web 4, 1 (2009)Google Scholar
  24. 24.
    Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (1997)Google Scholar
  25. 25.
    De Las Rivas, J., Fontanillo, C.: Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Computational Biology 6, 6 (2010)Google Scholar
  26. 26.
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Blast local alignment search tool. Journal of Molecular Biology 215(3), 403–410 (1990)Google Scholar
  27. 27.
    Finn, R.D., Clements, J., Eddy, S.R.: HMMER web server: interactive sequence similarity searching. Nucleic Acids Research 39, W29–W37 (2011)CrossRefGoogle Scholar
  28. 28.
    Goderis, A.: Workflow Re-use and Discovery in Bioinformatics. PhD Thesis, School of Computer Science, The University of Manchester (2008)Google Scholar
  29. 29.
    Baader, F.: The Description Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cambridge University Press (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ian Wood
    • 1
  • Ben Vandervalk
    • 1
  • Luke McCarthy
    • 1
  • Mark D. Wilkinson
    • 2
  1. 1.Institute for Heart + Lung Health, St. Paul’s HospitalUniversity of British ColumbiaVancouverCanada
  2. 2.Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de MadridMadridEspaña

Personalised recommendations