A prominent learning algorithm is Angluin’s L ∗  algorithm, which allows to learn a minimal deterministic automaton using so-called membership and equivalence queries addressed to a teacher. In many applications, however, a teacher might be unable to answer some of the membership queries because parts of the object to learn are not completely specified, not observable, it is too expensive to resolve these queries, etc. Then, these queries may be answered inconclusively. In this paper, we survey different algorithms to learn minimal deterministic automata in this setting in a coherent fashion. Moreover, we provide modifications and improvements for these algorithms, which are enabled by recent developments.


Regular Language Minimization Procedure Membership Query Equivalence Query Containment Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Angluin, D.: Negative results for equivalence queries. Machine Learning 5, 121–150 (1990)Google Scholar
  3. 3.
    Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from samples of their behavior. IEEE Transactions on Computers C 21(6), 592–597 (1972)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Chen, Y.-F., Farzan, A., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Learning Minimal Separating DFA’s for Compositional Verification. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 31–45. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Gold, E.M.: Complexity of automaton identification from given data. Information and Control 37(3), 302–320 (1978)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Grinchtein, O., Leucker, M., Piterman, N.: Inferring Network Invariants Automatically. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 483–497. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Heule, M., Verwer, S.: Exact DFA Identification Using SAT Solvers. In: Sempere, J.M., García, P. (eds.) ICGI 2010. LNCS, vol. 6339, pp. 66–79. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Leucker, M.: Learning Meets Verification. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2006. LNCS, vol. 4709, pp. 127–151. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Oliveira, A.L., Silva, J.P.M.: Efficient algorithms for the inference of minimum size dfas. Machine Learning 44(1/2), 93–119 (2001)MATHCrossRefGoogle Scholar
  10. 10.
    Paull, M., Unger, S.: Minimizing the number of states in incompletely specified sequential switching functions. IRE Transactions on Electronic Computers (3), 356–367 (1959)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Martin Leucker
    • 1
  • Daniel Neider
    • 2
  1. 1.Institute for Software Engineering and Programming LanguagesUniversity of LübeckGermany
  2. 2.Lehrstuhl für Informatik 7RWTH Aachen UniversityGermany

Personalised recommendations