Electric power production infrastructures around the globe are shifting from centralised, controllable production to decentralised structures based on distributed microgeneration. As the share of renewable energy sources such as wind and solar power increases, electric power production becomes subject to unpredictable and significant fluctuations. This paper reports on formal behavioural models of future power grids with a substantial share of renewable, especially photovoltaic, microgeneration. We give a broad overview of the various system aspects of interest and the corresponding challenges in finding suitable abstractions and developing formal models. We focus on current developments within the German power grid, where enormous growth rates of microgeneration start to induce stability problems of a new kind. We build formal models to investigate runtime control algorithms for photovoltaic microgenerators in terms of grid stability, dependability and fairness. We compare the currently implemented and proposed runtime control strategies to a set of approaches that take up and combine ideas from randomised distributed algorithms widely used in communication protocols today. Our models are specified in Modest, an expressive modelling language for stochastic timed systems with a well-defined semantics. Current tool support for Modest allows the evaluation of the models using simulation as well as model-checking techniques.


Electric Power Transmission Control Protocol Power Grid Safe State Grid State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Berrang, P., Bogdoll, J., Hahn, E.M., Hartmanns, A., Hermanns, H.: Dependability results for power grids with decentralized stabilization strategies. Reports of SFB/TR 14 AVACS 83 (2012) ISSN: 1860-9821,
  3. 3.
    Berrang, P., Hartmanns, A., Hermanns, H.: A comparative analysis of decentralized power grid stabilization strategies. In: Winter Simulation Conference (to appear, 2012)Google Scholar
  4. 4.
    Bogdoll, J., David, A., Hartmanns, A., Hermanns, H.: mctau: Bridging the Gap between Modest and UPPAAL. In: Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 227–233. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Bogdoll, J., Hartmanns, A., Hermanns, H.: Simulation and Statistical Model Checking for Modestly Nondeterministic Models. In: Schmitt, J.B. (ed.) MMB & DFT 2012. LNCS, vol. 7201, pp. 249–252. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MoDeST: A compositional modeling formalism for hard and softly timed systems. IEEE Transactions on Software Engineering 32(10), 812–830 (2006)CrossRefGoogle Scholar
  7. 7.
    Bömer, J., Burges, K., Zolotarev, P., Lehner, J.: Auswirkungen eines hohen Anteils dezentraler Erzeugungsanlagen auf die Netzstabilität bei Überfrequenz & Entwicklung von Lösungsvorschlägen zu deren Überwindung (2011); study commissioned by EnBW Transportnetze AG, Bundesverband Solarwirtschaft e.V. and Forum Netztechnik/Netzbetrieb im VDE e.VGoogle Scholar
  8. 8.
    Le Boudec, J.-Y., Tomozei, D.-C.: A Demand-Response Calculus with Perfect Batteries. In: Schmitt, J.B. (ed.) MMB & DFT 2012. LNCS, vol. 7201, pp. 273–287. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: Automatic Verification of Competitive Stochastic Systems. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 315–330. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Dolev, S.: Self-Stabilization. MIT Press (2000)Google Scholar
  12. 12.
    Haas, P.J., Shedler, G.S.: Regenerative generalized semi-Markov processes. Communications in Statistics. Stochastic Models 3(3), 409–438 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional modelling and analysis framework for stochastic hybrid systems. Formal Methods in System Design (2012), doi: 10.1007/s10703-012-0167-zGoogle Scholar
  14. 14.
    Hartmanns, A.: Model-Checking and Simulation for Stochastic Timed Systems. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 372–391. Springer, Heidelberg (2011)Google Scholar
  15. 15.
    Hartmanns, A., Hermanns, H.: A Modest approach to checking probabilistic timed automata. In: QEST. pp. 187–196. IEEE Computer Society (2009)Google Scholar
  16. 16.
    Hermanns, H., Wiechmann, H.: Future design challenges for electric energy supply. In: ETFA. pp. 1–8. IEEE (2009)Google Scholar
  17. 17.
    Hermanns, H., Wiechmann, H.: Demand-Response Managment for Dependable Power Grids. In: Embedded Systems for Smart Appliances and Energy Managment, Embedded Systems, vol. 3. Springer Science+Business Media, New York (2012)Google Scholar
  18. 18.
    Hildmann, H., Saffre, F.: Influence of variable supply and load flexibility on demand-side management. In: EEM 2011, pp. 63–68. IEEE Conference Publications (2011)Google Scholar
  19. 19.
    Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification of real-time systems with discrete probability distributions. Theor. Comput. Sci. 282(1), 101–150 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Lehnhoff, S.: Private communication (2012)Google Scholar
  21. 21.
    Martins, J., Platzer, A., Leite, J.: Statistical Model Checking for Distributed Probabilistic-Control Hybrid Automata with Smart Grid Applications. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 131–146. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. John Wiley & Sons Inc., New York (1994)zbMATHGoogle Scholar
  24. 24.
    Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. Ph.D. thesis, MIT, Cambridge, MA, USA (1995)Google Scholar
  25. 25.
    Wiechmann, H.: Private communication (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Arnd Hartmanns
    • 1
  • Holger Hermanns
    • 1
  1. 1.Computer ScienceSaarland UniversitySaarbrückenGermany

Personalised recommendations