Advertisement

Runtime Verification of Biological Systems

  • Alexandre David
  • Kim Guldstrand Larsen
  • Axel Legay
  • Marius Mikučionis
  • Danny Bøgsted Poulsen
  • Sean Sedwards
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7609)

Abstract

Complex computational systems are ubiquitous and their study increasingly important. Given the ease with which it is possible to construct large systems with heterogeneous technology, there is strong motivation to provide automated means to verify their safety, efficiency and reliability. In another context, biological systems are supreme examples of complex systems for which there are no design specifications. In both cases it is usually difficult to reason at the level of the description of the systems and much more convenient to investigate properties of their executions.

To demonstrate runtime verification of complex systems we apply statistical model checking techniques to a model of robust biological oscillations taken from the literature. The model demonstrates some of the mechanisms used by biological systems to maintain reliable performance in the face of inherent stochasticity and is therefore instructive. To perform our investigation we use two recently developed SMC platforms: that incorporated in Uppaal and Plasma. Uppaal-smc offers a generic modeling language based on stochastic hybrid automata, while Plasma aims at domain specific support with the facility to accept biological models represented in chemical syntax.

Keywords

runtime verification synthetic biology statistical model checking genetic oscillator MITL frequency domain analysis Uppaal-smc Plasma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight Jr., T.F., Nagpal, R., Rauch, E., Sussman, G.J., Weiss, R.: Amorphous computing. Commun. ACM 43(5), 74–82 (2000)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Barkai, N., Leibler, S.: Biological rhythms: Circadian clocks limited by noise. Nature 403, 267–268 (2000)Google Scholar
  4. 4.
    Legay, A., Delahaye, B., Bensalem, S.: Statistical Model Checking: An Overview. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Bulychev, P.E., David, A., Larsen, K.G., Legay, A., Li, G., Poulsen, D.B., Stainer, A.: Monitor-Based Statistical Model Checking for Weighted Metric Temporal Logic. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 168–182. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs. Commun. ACM 18(8), 453–457 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annual Review of Physical Chemistry 58, 35–55 (2007)CrossRefGoogle Scholar
  8. 8.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81, 2340–2361 (1977)CrossRefGoogle Scholar
  9. 9.
    Gillespie, D.T.: Deterministic limit of stochastic chemical kinetics. The Journal of Physical Chemistry. B 113, 1640–1644 (2009)CrossRefGoogle Scholar
  10. 10.
    Havelund, K., Roşu, G.: Synthesizing Monitors for Safety Properties. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate Probabilistic Model Checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 307–329. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Hilborn, R.C., Erwin, J.D.: Stochastic coherence in an oscillatory gene circuit model. Journal of Theoretical Biology 253(2), 349–354 (2008)CrossRefGoogle Scholar
  13. 13.
    Hoeffding, W.: Probability inequalities. Journal of the American Statistical Association 58, 13–30 (1963)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Ihekwaba, A., Sedwards, S.: Communicating oscillatory networks: frequency domain analysis. BMC Systems Biology 5(1), 203 (2011)CrossRefGoogle Scholar
  15. 15.
    Jegourel, C., Legay, A., Sedwards, S.: A Platform for High Performance Statistical Model Checking – PLASMA. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 498–503. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Jegourel, C., Legay, A., Sedwards, S.: Cross-Entropy Optimisation of Importance Sampling Parameters for Statistical Model Checking. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 327–342. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Laplante, S., Lassaigne, R., Magniez, F., Peyronnet, S., de Rougemont, M.: Probabilistic abstraction for model checking: An approach based on property testing. ACM TCS 8(4) (2007)Google Scholar
  18. 18.
    Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. STTT 1(1-2), 134–152 (1997)zbMATHCrossRefGoogle Scholar
  19. 19.
    Purcell, O., Savery, N.J., Grierson, C.S., di Bernardo, M.: A comparative analysis of synthetic genetic oscillators. Journal of The Royal Society Interface 7(52), 1503–1524 (2010)CrossRefGoogle Scholar
  20. 20.
    Ridder, A.: Importance sampling simulations of markovian reliability systems using cross-entropy. Annals of Operations Research 134, 119–136 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Roşu, G., Bensalem, S.: Allen Linear (Interval) Temporal Logic – Translation to LTL and Monitor Synthesis. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 263–277. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Sedwards, S.: A Natural Computation Approach To Biology: Modelling Cellular Processes and Populations of Cells With Stochastic Models of P Systems. PhD thesis, University of Trento (2009)Google Scholar
  23. 23.
    Sen, K., Viswanathan, M., Agha, G.: Statistical Model Checking of Black-Box Probabilistic Systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 202–215. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Vilar, J.M.G., Kueh, H.Y., Barkai, N., Leibler, S.: Mechanisms of noise-resistance in genetic oscillators. Proceedings of the National Academy of Sciences 99(9), 5988–5992 (2002)CrossRefGoogle Scholar
  25. 25.
    Wald, A.: Sequential tests of statistical hypotheses. Annals of Mathematical Statistics 16(2), 117–186 (1945)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Younes, H.L.S.: Ymer: A Statistical Model Checker. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Younes, H.L.S., Simmons, R.G.: Probabilistic Verification of Discrete Event Systems Using Acceptance Sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alexandre David
    • 1
  • Kim Guldstrand Larsen
    • 1
  • Axel Legay
    • 2
  • Marius Mikučionis
    • 1
  • Danny Bøgsted Poulsen
    • 1
  • Sean Sedwards
    • 2
  1. 1.Computer ScienceAalborg UniversityDenmark
  2. 2.INRIA Rennes – Bretagne AtlantiqueFrance

Personalised recommendations