Inferring Global Synchrony from Local Symbolic Dynamics

  • Sarika JalanEmail author
  • Fatihcan M. Atay
  • Jürgen Jost
Part of the Understanding Complex Systems book series (UCS)


Symbolic dynamics based on specific partitions prevents the occurrence of certain symbolic sequences that are characteristics of the dynamical function. Such partitions lead to a maximal difference in the permutation entropy of a chaotic and the corresponding random system. The symbolic dynamics defined by such partition has several practical applications, one of which is the detection of global synchrony in coupled systems. The synchronized state is detected by observing the complete absence or at least low frequency of particular symbol sequences. The method uses short time series and is hence computationally fast. Also, because it compares the symbol sequence of one single unit in the network with some model behavior, it does not depend on the size of the network and is robust against external noise.


External Noise Optimal Partition Symbolic Dynamic Symbol Sequence Short Time Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Winfree, A.T.: Oscillating systems. On emerging coherence. Science 298(5602), 2336–2337 (2002)Google Scholar
  2. 2.
    Nadis, S.: Nature (London) 421, 780 (2003)Google Scholar
  3. 3.
    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Dynamics. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  4. 4.
    Vanag, V.K., Epstein, I.R. Science, 294, 835 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Roelfsema, P.R., Engel, A.K., Konig, P., Singer, W.: Nature (London) 385, 157 (1997)Google Scholar
  6. 6.
    Engel, J. Jr., Pedley, T.A. (eds.): Epilepsy: A Comprehensive Textbook. Lippincott-Raven, Philadelphia (1997)Google Scholar
  7. 7.
    Mormann, F., Kreuz, T., Andrzejak, R.G., David, P., Lehnertz, K., Elger, C.E.: Epilepsy Res. 53, 173 (2003)CrossRefGoogle Scholar
  8. 8.
    Kye, W.H., Choi, M., Kim, C.-M., Park, Y.-J.: Phys. Rev. E 71, 045202(R) (2005)Google Scholar
  9. 9.
    Stefanovska, A., Haken, H., McClintock, P.V.E., Hozic, M., Bajrovic, F., Ribaric, S. Phys. Rev. Lett. 85, 4831 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, London (1997)zbMATHGoogle Scholar
  11. 11.
    Boccaletti, S., Kurths, J., Osipov, G., Valladare, D.L. Zhou, C.S.: Phys. Rep. 366, 1 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Lind, D., Marcus, B.: Symbolic Dynamics and Coding. Cambridge University Press, London (1995)zbMATHCrossRefGoogle Scholar
  13. 13.
    Hao, B.-L., Zheng, W.-M.: Applied Symbolic Dynamics and Chaos. World Scientific, Singapore (1998)zbMATHCrossRefGoogle Scholar
  14. 14.
    Rudolph, D.J. Fundamentals of Measurable Dynamics, Ergodic theory on Lebesgue Spaces. Clarendon Press, Oxford (1990)zbMATHGoogle Scholar
  15. 15.
    Bollt, E.M., Stanford, T., Lai, Y.-C., Źyczkowski, K.: Phys. D 154, 259 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Pethel, S.D., Corron, N.J., Bollt, E.: Phys. Rev. Lett. 99, 214101 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Bandt, C., Pompe, B.: Phys. Rev. Lett. 88, 174102 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Atay, F.M., Jalan, S., Jost, J.: Complexity 15(1), 29 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Jalan, S., Jost, J., Atay, F.M.: Chaos 16, 033124 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Atay, F.M., Jalan, S., Jost, J.: Phys. Lett. A 375, 130 (2010)MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    Kaneko, K.: Phys. D 34, 1 (1998); Phys. Rev. Lett. 65, 1391 (1990); Phys. D 41, 137 (1990); Phys. D 124, 322 (1998)Google Scholar
  22. 22.
    Grassberger, P., Procaccia, I.: Phys. Rev. A 28, 2591 (1983)ADSCrossRefGoogle Scholar
  23. 23.
    Jalan, S., Amritkar, R.: Phys. Rev. Lett. 90 014101 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    Takens, F.: Lecture Notes in Mathematics 818, 366 (1981)MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Farmer, J.D., Sidorowich, J.J.: Phys. Rev. Lett. 59, 845 (1987)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Phys. Rev. A 45, 3403 (1992)ADSCrossRefGoogle Scholar
  27. 27.
    Lichtenberg, A.J., Lieberman, M.A.: Regular and Chaotic Dynamics. Springer, Berlin (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Indian Institute of Technology IndoreIndoreIndia
  2. 2.Max Planck Institute for Mathematics in the SciencesLeipzigGermany

Personalised recommendations