Simulation on Cloud Computing Infrastructures of Parametric Studies of Nonlinear Solids Problems

  • Elina Pacini
  • Melisa Ribero
  • Cristian Mateos
  • Anibal Mirasso
  • Carlos García Garino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7547)

Abstract

Scientists and engineers are more and more faced to the need of computational power to satisfy the ever-increasing resource intensive nature of their experiments. Traditionally, they have relied on conventional computing infrastructures such as clusters and Grids. A recent computing paradigm that is gaining momentum is Cloud Computing, which offers a simpler administration mechanism compared to those conventional infrastructures. However, there is a lack of studies in the literature about the viability of using Cloud Computing to execute scientific and engineering applications from a performance standpoint. We present an empirical study on the employment of Cloud infrastructures to run parameter sweep experiments (PSEs), particularly studies of viscoplastic solids together with simulations by using the CloudSim toolkit. In general, we obtained very good speedups, which suggest that disciplinary users could benefit from Cloud Computing for executing resource intensive PSEs.

Keywords

Parameter Sweep Viscoplastic Solids Cloud Computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Youn, C., Kaiser, T.: Management of a parameter sweep for scientific applications on cluster environments. Concurrency and Computation: Practice and Experience 22, 2381–2400 (2010)CrossRefGoogle Scholar
  2. 2.
    Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: The Condor experience. Concurrency and Computation: Practice and Experience 17, 323–356 (2005)CrossRefGoogle Scholar
  3. 3.
    Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann Inc., San Francisco (2003)Google Scholar
  4. 4.
    Dikaiakos, M.D., Katsaros, D., Mehra, P., Pallis, G., Vakali, A.: Cloud Computing: Distributed Internet Computing for IT and Scientific Research. IEEE Internet Computing 13(5), 10–13 (2009)CrossRefGoogle Scholar
  5. 5.
    Careglio, C., Monge, D., Pacini, E., Mateos, C., Mirasso, A., García Garino, C.: Sensibilidad de resultados del ensayo de tracción simple frente a diferentes tamaños y tipos de imperfecciones. Mecánica Computacional XXIX, 4181–4197 (2010)Google Scholar
  6. 6.
    Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C., Buyya, R.: Cloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software - Practice and Experience 41, 23–50 (2011)CrossRefGoogle Scholar
  7. 7.
    Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming with the Message Passing Interface. MIT Press (1994)Google Scholar
  8. 8.
    Erickson, J., Siau, K.: Web Service, Service-Oriented Computing, and Service-Oriented Architecture: Separating hype from reality. Journal of Database Management 19, 42–54 (2008)CrossRefGoogle Scholar
  9. 9.
    Wang, L., Tao, J., Kunze, M., Castellanos, A.C., Kramer, D., Karl, W.: Scientific cloud computing: Early definition and experience. In: 10th IEEE International Conference on High Performance Computing and Communications, pp. 825–830 (2008)Google Scholar
  10. 10.
    Alfano, G., Angelis, F.D., Rosati, L.: General Solution procedures in elasto-viscoplasticity. Computer Methods in Applied Mechanics and Engineering 190, 5123–5147 (2001)MATHCrossRefGoogle Scholar
  11. 11.
    García Garino, C., Oliver, J.: Un modelo constitutivo para el análisis de sólidos elastoplásticos sometidos a grandes deformaciones: Parte I formulación teórica y aplicación a metales. Revista internacional de métodos numéricos para cálculo y diseño en ingeniería 11, 105–122 (1995) (in Spanish)Google Scholar
  12. 12.
    Ponthot, J., García Garino, C., Mirasso, A.: Large strain viscoplastic constitutive model. Theory and numerical scheme. Mecánica Computacional XXIV, 441–454 (2005)Google Scholar
  13. 13.
    García Garino, C., Gabaldón, F., Goicolea, J.M.: Finite element simulation of the simple tension test in metals. Finite Elements in Analysis and Design 42, 1187–1197 (2006)CrossRefGoogle Scholar
  14. 14.
    Pacini, E., Mateos, C., García Garino, C.: Planificadores basados en inteligencia colectiva para experimentos de simulación numérica en entornos distribuidos. In: Sexta Edición del Encuentro de Investigadores y Docentes de Ingeniería ENIDI 2011 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Elina Pacini
    • 1
  • Melisa Ribero
    • 1
    • 2
  • Cristian Mateos
    • 3
  • Anibal Mirasso
    • 2
  • Carlos García Garino
    • 1
    • 2
  1. 1.Instituto para las Tecnologías de la Información y las Comunicaciones (ITIC)UNCuyoMendozaArgentina
  2. 2.Facultad de IngenieríaUNCuyoMendozaArgentina
  3. 3.ISISTAN - CONICETTandilArgentina

Personalised recommendations