Spatial Keyword Querying

  • Xin Cao
  • Lisi Chen
  • Gao Cong
  • Christian S. Jensen
  • Qiang Qu
  • Anders Skovsgaard
  • Dingming Wu
  • Man Lung Yiu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7532)

Abstract

The web is increasingly being used by mobile users. In addition, it is increasingly becoming possible to accurately geo-position mobile users and web content. This development gives prominence to spatial web data management. Specifically, a spatial keyword query takes a user location and user-supplied keywords as arguments and returns web objects that are spatially and textually relevant to these arguments. This paper reviews recent results by the authors that aim to achieve spatial keyword querying functionality that is easy to use, relevant to users, and can be supported efficiently. The paper covers different kinds of functionality as well as the ideas underlying their definition.

Keywords

Transportation Shoe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aurenhammer, F., Edelsbrunner, H.: An optimal algorithm for constructing the weighted Voronoi diagram in the plane. Pattern Recognition 17(2), 51–57 (1984)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cao, X., Cong, G., Jensen, C.S.: Mining significant semantic locations from GPS data. PVLDB 3(1), 1009–1020 (2010)Google Scholar
  3. 3.
    Cao, X., Cong, G., Jensen, C.S.: Retrieving top-k prestige-based relevant spatial web objects. PVLDB 3(1), 373–384 (2010)Google Scholar
  4. 4.
    Cao, X., Cong, G., Jensen, C.S., Ooi, B.C.: Collective spatial keyword querying. In: SIGMOD, pp. 373–384 (2011)Google Scholar
  5. 5.
    Chen, Y.-Y., Suel, T., Markowetz, A.: Efficient query processing in geographic web search engines. In: SIGMOD, pp. 277–288 (2006)Google Scholar
  6. 6.
    Christoforaki, M., He, J., Dimopoulos, C., Markowetz, A., Suel, T.: Text vs. space: efficient geo-search query processing. In: CIKM, pp. 423–432 (2011)Google Scholar
  7. 7.
    Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial web objects. PVLDB 2(1), 337–348 (2009)Google Scholar
  8. 8.
    Felipe, I.D., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In: ICDE, pp. 656–665 (2008)Google Scholar
  9. 9.
    Google: Google latitude API (2012), http://developers.google.com/latitude
  10. 10.
    Google: Google Places. Stats & Facts (2012), sites.google.com/a/pressatgoogle.com/googleplaces/metrics
  11. 11.
    Hage, C., Jensen, C.S., Pedersen, T.B., Speicys, L., Timko, I.: Integrated data management for mobile services in the real world. In: VLDB, pp. 1019–1030 (2003)Google Scholar
  12. 12.
    IDC: Smartphone statistics and market share (2012), www.email-marketing-reports.com/wireless-mobile/smartphone-statistics.htm
  13. 13.
    Jensen, C.S., Lu, H., Yang, B.: Graph model based indoor tracking. In: MDM, pp. 122–131 (2009)Google Scholar
  14. 14.
    Li, Z., Lee, K.C.K., Zheng, B., Lee, W.-C., Lee, D.L., Wang, X.: IR-tree: an efficient index for geographic document search. TKDE 23(4), 585–599 (2011)Google Scholar
  15. 15.
    Lu, H., Cao, X., Jensen, C.S.: A foundation for efficient indoor distance-aware query processing. In: ICDE, pp. 438–449 (2012)Google Scholar
  16. 16.
    Lu, J., Lu, Y., Cong, G.: Reverse spatial and textual k nearest neighbor search. In: SIGMOD, pp. 349–360 (2011)Google Scholar
  17. 17.
    Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval. In: SIGIR, pp. 275–281 (1998)Google Scholar
  18. 18.
    Rocha-Junior, J.B., Gkorgkas, O., Jonassen, S., Nørvåg, K.: Efficient Processing of Top-k Spatial Keyword Queries. In: Pfoser, D., Tao, Y., Mouratidis, K., Nascimento, M.A., Mokbel, M., Shekhar, S., Huang, Y. (eds.) SSTD 2011. LNCS, vol. 6849, pp. 205–222. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Speicys, L., Jensen, C.S.: Enabling location-based services—multi-graph representation of transportation networks. Geoinformatica 12(2), 219–253 (2008)CrossRefGoogle Scholar
  20. 20.
    Statistic Brain: Google Annual Search Statistics (2012), http://www.statisticbrain.com/google-searches/
  21. 21.
    Search Engine Land: Microsoft: 53 percent of mobile searches have local intent (2012), searchengineland.com/microsoft-53-percent-of-mobile-searches-have-local-intent-55556
  22. 22.
    Venetis, P., Gonzalez, H., Jensen, C.S., Halevy, A.: Hyper-local, directions-based ranking of places. PVLDB 4(5), 290–301 (2011)Google Scholar
  23. 23.
    Wu, D., Yiu, M.L., Jensen, C.S., Cong, G.: Efficient continuously moving top-k spatial keyword query processing. In: ICDE, pp. 541–552 (2011)Google Scholar
  24. 24.
    Zeiler, M.: Modeling our World—The ESRI Guide to Geodatabase Design. ESRI Press (1999)Google Scholar
  25. 25.
    Zhang, D., Chee, Y.M., Mondal, A., Tung, A.K.H., Kitsuregawa, M.: Keyword search in spatial databases: Towards searching by document. In: ICDE, pp. 688–699 (2009)Google Scholar
  26. 26.
    Zhang, D., Ooi, B.C., Tung, A.K.H.: Locating mapped resources in web 2.0. In: ICDE, pp. 521–532 (2010)Google Scholar
  27. 27.
    Zhou, Y., Xie, X., Wang, C., Gong, Y., Ma, W.-Y.: Hybrid index structures for location-based web search. In: CIKM, pp. 155–162 (2005)Google Scholar
  28. 28.
    Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput. Surv. 38(2) (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xin Cao
    • 1
  • Lisi Chen
    • 1
  • Gao Cong
    • 1
  • Christian S. Jensen
    • 2
  • Qiang Qu
    • 2
  • Anders Skovsgaard
    • 2
  • Dingming Wu
    • 3
  • Man Lung Yiu
    • 4
  1. 1.Nanyang Technological UniversitySingapore
  2. 2.Aarhus UniversityDenmark
  3. 3.Hong Kong Baptist UniversityHong Kong
  4. 4.Hong Kong Polytechnic UniversityHong Kong

Personalised recommendations