Advertisement

Towards Discovering Conceptual Models behind Web Sites

  • Inma Hernández
  • Carlos R. Rivero
  • David Ruiz
  • Rafael Corchuelo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7532)

Abstract

Deep Web sites expose data from a database, whose conceptual model remains hidden. Having access to that model is mandatory to perform several tasks, such as integrating different web sites; extracting information from the web unsupervisedly; or creating ontologies. In this paper, we propose a technique to discover the conceptual model behind a web site in the Deep Web, using a statistical approach to discover relationships between entities. Our proposal is unsupervised, not requiring the user to have expert knowledge; and it does not focus on a single view on the database, instead it integrates all views containing entities and relationships that are exposed in the web site.

Keywords

URL Patterns Conceptual Models Model Discovery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arasu, A., Garcia-Molina, H.: Extracting structured data from web pages. In: SIGMOD, pp. 337–348 (2003)Google Scholar
  2. 2.
    Atzeni, P., Mecca, G., Merialdo, P.: Managing web-based data: Database models and transformations. IEEE Internet Computing 6(4), 33–37 (2002)CrossRefGoogle Scholar
  3. 3.
    Bar-Yossef, Z., Keidar, I., Schonfeld, U.: Do not crawl in the dust: different URLs with similar text. In: WWW, pp. 111–120. ACM (2007)Google Scholar
  4. 4.
    Blanco, L., Bronzi, M., Crescenzi, V., Merialdo, P., Papotti, P.: Automatically building probabilistic databases from the Web. In: WWW, pp. 185–188 (2011)Google Scholar
  5. 5.
    Blanco, L., Crescenzi, V., Merialdo, P.: Structure and semantics of Data-Intensive Web pages: An experimental study on their relationships. J. UCS 14(11), 1877–1892 (2008)Google Scholar
  6. 6.
    Blanco, L., Dalvi, N., Machanavajjhala, A.: Highly efficient algorithms for structural clustering of large websites. In: WWW, pp. 437–446. ACM (2011)Google Scholar
  7. 7.
    Chang, C.-H., Kayed, M., Girgis, M.R., Shaalan, K.F.: A survey of web information extraction systems. IEEE TKDE 18(10), 1411–1428 (2006)Google Scholar
  8. 8.
    Chang, K.C.-C., He, B., Li, C., Patel, M., Zhang, Z.: Structured Databases on the Web: Observations and Implications. SIGMOD Record 33(3), 61–70 (2004)CrossRefGoogle Scholar
  9. 9.
    Crescenzi, V., Mecca, G.: Automatic information extraction from large websites. J. ACM 51(5), 731–779 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Hernández, I., Rivero, C.R., Ruiz, D., Corchuelo, R.: A statistical approach to URL-based web page clustering. In: WWW, pp. 525–526 (2012)Google Scholar
  11. 11.
    Kayed, M., Chang, C.-H.: Fivatech: Page-level web data extraction from template pages. IEEE Trans. Knowl. Data Eng. 22(2), 249–263 (2010)CrossRefGoogle Scholar
  12. 12.
    Mecca, G., Raunich, S., Pappalardo, A.: A new algorithm for clustering search results. Data Knowl. Eng. 62(3), 504–522 (2007)CrossRefGoogle Scholar
  13. 13.
    Deepak, P., Khemani, D.: Unsupervised learning from URL corpora. In: COMAD, pp. 128–139 (2006)Google Scholar
  14. 14.
    Popa, L., Velegrakis, Y., Miller, R.J., Hernández, M.A., Fagin, R.: Translating web data. In: VLDB, pp. 598–609 (2002)Google Scholar
  15. 15.
    Rivero, C.R., Hernández, I., Ruiz, D., Corchuelo, R.: Generating SPARQL Executable Mappings to Integrate Ontologies. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 118–131. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Tao, C., Embley, D.W., Liddle, S.W.: FOCIH: Form-Based Ontology Creation and Information Harvesting. In: Laender, A.H.F., Castano, S., Dayal, U., Casati, F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp. 346–359. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Thonggoom, O., Song, I.-Y., An, Y.: Semi-automatic Conceptual Data Modeling Using Entity and Relationship Instance Repositories. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 219–232. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Inma Hernández
    • 1
  • Carlos R. Rivero
    • 1
  • David Ruiz
    • 1
  • Rafael Corchuelo
    • 1
  1. 1.University of SevillaSpain

Personalised recommendations