Mega-modeling for Big Data Analytics

  • Stefano Ceri
  • Emanuele Della Valle
  • Dino Pedreschi
  • Roberto Trasarti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7532)

Abstract

The availability of huge amounts of data (“big data”) is changing our attitude towards science, which is moving from specialized to massive experiments and from very focused to very broad research questions. Models of all kinds, from analytic to numeric, from exact to stochastic, from simulative to predictive, from behavioral to ontological, from patterns to laws, enable massive data analysis and mining, often in real time. Scientific discovery in most cases stems from complex pipelines of data analysis and data mining methods on top of “big” experimental data, confronted and contrasted with state-of-art knowledge. In this setting, we propose mega-modelling as a new holistic data and model management system for the acquisition, composition, integration, management, querying and mining of data and models, capable of mastering the co-evolution of data and models and of supporting the creation of what-if analyses, predictive analytics and scenario explorations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bishop, S., Helbing, D.: FuturICT Project Summary, http://www.futurict.eu
  2. 2.
    Hey, T., Tansley, S., Tolle, K. (eds.): The Fourth Paradigm. Data-Intensive Scientific Discovery. Microsoft Research (2009)Google Scholar
  3. 3.
    Haas, P.J., Maglio, P.P., Selinger, P.G., Tan, W.-C.: Data is Dead …Without What-If Models. In: Proceedings of the Very Large Data Bases Endowment, PVLDB, vol. 4(12) (2011)Google Scholar
  4. 4.
    Wiederhold, G., Wegner, P., Ceri, S.: Towards Mega-Programming. ACM Communications 35, 11 (1992)CrossRefGoogle Scholar
  5. 5.
    Bezivin, J., Journault, F., Valduriez, P.: On the need for Megamodels. In: OOPSLA 2004/GPCE WorkshopGoogle Scholar
  6. 6.
    Favre, J.-M., Nguyen, T.: Towards a Megamodel to Model Software Evolution Through Transformations. Electr. Notes Theor. Comput. Sci. 127(3), 59–74 (2005)CrossRefGoogle Scholar
  7. 7.
    Schmidt, D.C.: Model-Driven Engineering. IEEE Computer 39(2), 25–31 (2006)CrossRefGoogle Scholar
  8. 8.
    Seibel, A., Neumann, S., Giese, H.: Dynamic Hierarchical Megamodels: Comprehensive Traceability and its Efficient Maintenance. Software and System Modeling 9(4), 493–528 (2010)CrossRefGoogle Scholar
  9. 9.
    Imielinski, T., Mannila, H.: A Database Perspective on Knowledge Discovery. Communication of the ACM 39(11), 58–64 (1996)CrossRefGoogle Scholar
  10. 10.
    Blockeel, H., Goethals, B., Calders, T., Prado, A., Fromont, E., Robardet, C.: An Inductive Database System Based on Virtual Mining Views. Data Mining & Knowledge Discovery 24(1), 247–287 (2012)MATHCrossRefGoogle Scholar
  11. 11.
    Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F., Renso, C., Rinzivillo, S., Trasarti, R.: Unveiling the Complexity of Human Mobility by Querying and Mining Massive Trajectory Data. The VLDB Journal 20(5), 695–719 (2011)CrossRefGoogle Scholar
  12. 12.
    Franklin, M.J., Kossmann, D., Kraska, T., Ramesh, S., Xin, R.: CrowdDB: Answering Que-ries with Crowdsourcing. In: Proc. ACM-Sigmod, Athens (June 2011)Google Scholar
  13. 13.
    Bozzon, A., Brambilla, M., Ceri, S.: Answering Search Queries with Crowdsearcher. In: Proc. WWW 2012, Lyon (April 2012)Google Scholar
  14. 14.
    Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. In: Operating Systems Design and Implementation (USDI 2004), pp. 137–147 (2004)Google Scholar
  15. 15.
    Celino, I., Dell’Aglio, D., Della Valle, E., Huang, Y., Lee, T., Park, S., Tresp, V.: Bottari: an Augmented Reality Mobile Application to deliver Personalized and Location-based Recommendations by Continuous Analysis of Social Media Streams. J. Web Semantics (to appear, 2012)Google Scholar
  16. 16.
    Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Huang, Y., Tresp, V., Rettinger, A., Wermser, H.: Deductive and Inductive Stream Reasoning for Semantic Social Media Analytics. IEEE Intelligent Systems 25(6), 32–41 (2010)CrossRefGoogle Scholar
  17. 17.
    Assel, M., Cheptsov, A., Gallizo, G., Celino, I., Dell’Aglio, D., Bradesko, L., Witbrock, M., Della Valle, E.: Large Knowledge Collider: a Service-oriented Platform for Large-scale Se-mantic Reasoning. In: Proc. WIMS 2011 (2011)Google Scholar
  18. 18.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440 (1998)CrossRefGoogle Scholar
  19. 19.
    Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509 (1999)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press (2010)Google Scholar
  21. 21.
    Coscia, M., Giannotti, F., Pedreschi, D.: A classification for community discovery methods in complex networks. Statistical Analysis and Data Mining 4(5), 512–546 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Trasarti, R., Pinelli, F., Nanni, M., Giannotti, F.: Mining mobility user profiles for car pooling. In: KDD 2011, pp. 1190–1198 (2011)Google Scholar
  23. 23.
    Rinzivillo, S., Mainardi, S., Pezzoni, F., Coscia, M., Pedreschi, D., Giannotti, F.: Discovering the Geographical Borders of Human Mobility. KI - Künstliche Intelligenz (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stefano Ceri
    • 1
  • Emanuele Della Valle
    • 1
  • Dino Pedreschi
    • 2
  • Roberto Trasarti
    • 3
  1. 1.DEIPolitecnico di MilanoMilanoItaly
  2. 2.Dipartimento di InformaticaUniversità di PisaPisaItaly
  3. 3.ISTI-CNR, Istituto di Scienze e Tecnologie dell’Informazione del CNRPisaItaly

Personalised recommendations