Advertisement

A Theoretical Examination of Practical Game Playing: Lookahead Search

  • Vahab Mirrokni
  • Nithum Thain
  • Adrian Vetta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7615)

Abstract

Lookahead search is perhaps the most natural and widely used game playing strategy. Given the practical importance of the method, the aim of this paper is to provide a theoretical performance examination of lookahead search in a wide variety of applications. To determine a strategy play using lookahead search, each agent predicts multiple levels of possible re-actions to her move (via the use of a search tree), and then chooses the play that optimizes her future payoff accounting for these re-actions. There are several choices of optimization function the agents can choose, where the most appropriate choice of function will depend on the specifics of the actual game - we illustrate this in our examples. Furthermore, the type of search tree chosen by computationally-constrained agent can vary. We focus on the case where agents can evaluate only a bounded number, k, of moves into the future. That is, we use depth k search trees and call this approach k-lookahead search. We apply our method in five well-known settings: industrial organization (Cournot’s model); AdWord auctions; congestion games; valid-utility games and basic-utility games; cost-sharing network design games. We consider two questions. First, what is the expected social quality of outcome when agents apply lookahead search? Second, what interactive behaviours can be exhibited when players use lookahead search? We demonstrate how the answer depends on the game played.

Keywords

game theory market games valid utility games cournot stackelberg adwords network design bounded rationality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure on congestion games. Journal of the ACM 55(6) (2008)Google Scholar
  2. 2.
    Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. In: STOC (2005)Google Scholar
  3. 3.
    Awerbuch, B., Azar, Y., Epstein, A., Mirrokni, V., Skopalik, A.: Fast convergence to nearly-optimal solutions in potential games. In: EC, pp. 264–273 (2008)Google Scholar
  4. 4.
    Blum, A., Hajiaghayi, M., Ligett, K., Roth, A.: Regret minimization and the price of total anarchy. In: STOC, pp. 373–382 (2008)Google Scholar
  5. 5.
    Bu, T., Deng, X., Qi, Q.: Forward looking Nash equilibrium for keyword auction. Information Processing Letters 105(2), 41–46 (2008)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Cary, M., Das, A., Edelman, B., Giotis, I., Heimerl, K., Karlin, A., Mathieu, C., Schwarz, M.: Greedy bidding strategies for keyword auctions. In: EC (2007)Google Scholar
  7. 7.
    Chien, S., Sinclair, A.: Convergence to approximate Nash equilibria in congestion games. Games and Economic Behavior 71(2), 315–327 (2011)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Christodoulou, G., Mirrokni, V.S., Sidiropoulos, A.: Convergence and Approximation in Potential Games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 349–360. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Cournot, A.: Recherces sur les Principes Mathématiques de la Théorie des Richesse, Paris (1838)Google Scholar
  10. 10.
    Fabrikant, A., Papadimitriou, C.: The complexity of game dynamics: BGP oscillations, sink equlibria, and beyond. In: SODA, pp. 844–853 (2008)Google Scholar
  11. 11.
    Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure Nash equilibria. In: STOC, pp. 604–612 (2004)Google Scholar
  12. 12.
    Fanelli, A., Flammini, M., Moscardelli, L.: The Speed of Convergence in Congestion Games under Best-Response Dynamics. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 796–807. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Friedman, M.: The methodology of positive economics. In: Friedman, M. (ed.) Essays in Positive Economics, pp. 3–43. University of Chicago Press (1953)Google Scholar
  14. 14.
    Goemans, M., Li, L., Mirrokni, V., Thottan, M.: Market sharing games applied to content distribution in ad-hoc networks. In: MOBIHOC (2004)Google Scholar
  15. 15.
    Goemans, M., Mirrokni, V., Vetta, A.: Sink equilibria and convergence. In: FOCS, pp. 142–154 (2005)Google Scholar
  16. 16.
    de Groot, A.: Thought and Choice in Chess, 2nd edn. Mouton (1978), Original Version: Het denken van den Schaker, een experimenteel-psychologische studie, Ph.D. thesis, University of Amsterdam (1946)Google Scholar
  17. 17.
    de Kleer, J., Raiman, O., Shirley, M.: One step lookahead is pretty good. In: Hamscher, W., Console, L., de Kleer, J. (eds.) Readings in Model-Based Diagnosis, pp. 138–142. Morgan Kaufmann (1992)Google Scholar
  18. 18.
    Koutsoupias, E., Papadimitriou, C.: Worst-Case Equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Paes Leme, R., Tardos, E.: Pure and Bayes-Nash price of anarchy for generalized second price auction. In: FOCS (2010)Google Scholar
  20. 20.
    Markakis, E., Telelis, O.: Discrete Strategies in Keyword Auctions and Their Inefficiency for Locally Aware Bidders. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 523–530. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Mirrokni, V., Skopalik, A.: On the complexity of Nash dynamics and sink equilibria. In: EC (2009)Google Scholar
  22. 22.
    Mirrokni, V.S., Vetta, A.: Convergence Issues in Competitive Games. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) APPROX and RANDOM 2004. LNCS, vol. 3122, pp. 183–194. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Nagel, R.: Unraveling in guessing games: an experimental study. The American Economic Review 85(5), 1313–1326 (1995)Google Scholar
  24. 24.
    Nau, D.: An investigation of the causes of pathology in games. Artificial Intelligence 19, 257–278 (1982)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Nau, D.: Decision quality as a function of search depth on game trees. Journal of the ACM 30(4), 687–708 (1983)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Newell, A., Simon, H.: Human Problem Solving. Prentice-Hall (1972)Google Scholar
  27. 27.
    Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley (1984)Google Scholar
  28. 28.
    Rubenstein, A.: Modeling Bounded Rationality. MIT Press (1998)Google Scholar
  29. 29.
    Sefer, E., Kuter, U., Nau, D.: Real-time A* Search with Depth-k Lookahead. In: Proceedings of the International Symposium on Combinatorial Search (2009)Google Scholar
  30. 30.
    Selten, R.: What is bounded rationality? In: Gigerenzer, G., Selten, R. (eds.) Bounded Rationality: the Adaptive Toolbox, pp. 13–36. MIT Press (2001)Google Scholar
  31. 31.
    Shannon, C.: Programming a computer for playing chess. Philosophical Magazine, Series 7 41(314), 256–275 (1950)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Simon, H.: A behavioral model of rational choice. Psychological Review 63, 129–138 (1955)CrossRefGoogle Scholar
  33. 33.
    Skopalik, A., Vöcking, B.: Inapproximability of pure Nash equilibria. In: STOC, pp. 355–364 (2008)Google Scholar
  34. 34.
    Stahl, D., Wilson, P.: Experimental evidence on players’ models of other players. Journal of Economic Behavior and Organization 25(3), 309–327 (1994)CrossRefGoogle Scholar
  35. 35.
    Tirole, J.: The Theory of Industrial Organization. MIT Press (1988)Google Scholar
  36. 36.
    Varian, H.: Position auctions. International Journal of Industrial Organization 25, 1163–1178 (2007)CrossRefGoogle Scholar
  37. 37.
    Vetta, A.: Nash equilibria in competitive societies, with applications to facility location, traffic routing and auctions. In: FOCS, pp. 416–425 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Vahab Mirrokni
    • 1
  • Nithum Thain
    • 2
  • Adrian Vetta
    • 3
  1. 1.Google ResearchNew YorkUSA
  2. 2.Department of Mathematics and StatisticsMcGill UniversityUSA
  3. 3.Department of Mathematics and Statistics and School of Computer ScienceMcGill UniversityUSA

Personalised recommendations