UV and Camouflage in Crab Spiders (Thomisidae)

Abstract

Crab spiders are formidable predators of many insects. Their colour is particularly fascinating and we have an excellent account of the foraging ecology of some species. A more recent research focus has been the prevalence of UV reflection in some crab spider species. In this chapter we discuss the methods of quantifying colour and colour contrast and review the distribution, mechanism, function and evolution of UV reflectance amongst crab spiders.

References

  1. Abbott KR, Dukas R (2009) Honeybees consider flower danger in their waggle dance. Anim Behav 78:633–635CrossRefGoogle Scholar
  2. Backhaus W (1991) Color opponent coding in the visual system of the honeybee. Vision Res 31: 1381–1397PubMedCrossRefGoogle Scholar
  3. Benjamin SP, Dimitrov D, Gillespie RG, Hormiga G (2008) Family ties: molecular phylogeny of crab spiders (Araneae: Thomisidae). Cladistics 24:708–722CrossRefGoogle Scholar
  4. Bhaskara RM, Brijesh CM, Ahmed S, Borges RM (2009) Perception of ultraviolet light by crab spiders and its role in selection of hunting sites. J Comp Physiol A 195:409–417CrossRefGoogle Scholar
  5. Brechbühl R, Casas J, Bacher S (2010) Ineffective crypsis in a crab spider: a prey community perspective. Proc R Soc B Biol Sci 277:739–746CrossRefGoogle Scholar
  6. Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46: 471–510PubMedCrossRefGoogle Scholar
  7. Chittka L (1992) The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency. J Comp Physiol A 170:533–543Google Scholar
  8. Chittka L (2001) Camouflage of predatory crab spiders on flowers and the colour perception of bees (Aranida: Thomisidae/Hymenoptera: Apidae). Entomol Gen 25:181–187Google Scholar
  9. Chittka L, Shmida A, Troje N, Menzel R (1994) Ultraviolet as a component of flower reflections, and the colour perception of Hymenoptera. Vision Res 34:1489–1508PubMedCrossRefGoogle Scholar
  10. Defrize J, Thery M, Casas J (2010) Background colour matching by a crab spider in the field: a community sensory ecology perspective. J Exp Biol 213:1425–1435PubMedCrossRefGoogle Scholar
  11. Defrize J, Lazzari CR, Warrant EJ, Casas J (2011) Spectral sensitivity of a colour changing spider. J Insect Physiol 57:508–513PubMedCrossRefGoogle Scholar
  12. Dukas R (2001) Effects of perceived danger on flower choice by bees. Ecol Lett 4:327–333CrossRefGoogle Scholar
  13. Dukas R, Morse DH (2003) Crab spiders affect flower visitation by bees. Oikos 101:157–163CrossRefGoogle Scholar
  14. Dyer AG (1996) Reflection of near-ultraviolet radiation from flowers of Australian native plants. Aust J Bot 44:473–488CrossRefGoogle Scholar
  15. Endler J (1990) On the measurement and classification of colour in studies of animal colour patterns. Biol J Linn Soc 41:315–352CrossRefGoogle Scholar
  16. Endler J, Mielke P (2005) Comparing entire colour patterns as birds see them. Biol J Linn Soc 86: 405–431CrossRefGoogle Scholar
  17. Foelix RF (2011) Biology of spiders. Oxford University Press, OxfordGoogle Scholar
  18. Foelix RF, Erb B, Hill DE (2013) Structural colors in spiders. In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg (this volume)Google Scholar
  19. Gabritschevsky E (1927) Experiments on color changes and regeneration in the crab spider, Misumena vatia. J Exp Zool 42:117–267Google Scholar
  20. Gawryszewski FM (2011) Colouration in crab spiders (Thomisidae): mechanism, function and evolution. Ph.D. Thesis, Macquarie University, AustraliaGoogle Scholar
  21. Grether G, Kolluru G, Nersissian K (2004) Individual colour patches as multicomponent signals. Biol Rev 79:583–610PubMedCrossRefGoogle Scholar
  22. Heiling AM, Herberstein ME (2004) Predator–prey coevolution: Australian native bees avoid their spider predators. Proc Biol Sci 271:S196–S198PubMedCrossRefGoogle Scholar
  23. Heiling AM, Herberstein ME, Chittka L (2003) Crab-spiders manipulate flower signals. Nature 421:334PubMedCrossRefGoogle Scholar
  24. Heiling AM, Cheng K, Chittka L, Goeth A, Herberstein ME (2005a) The role of UV in crab spider signals: effects on perception by prey and predators. J Exp Biol 208:3925–3931PubMedCrossRefGoogle Scholar
  25. Heiling AM, Chittka L, Cheng K, Herberstein ME (2005b) Colouration in crab spiders: substrate choice and prey attraction. J Exp Biol 208:1785–1792PubMedCrossRefGoogle Scholar
  26. Herberstein ME, Heiling AM, Cheng K (2009) Evidence for UV-based sensory exploitation in Australian but not European crab spiders. Evol Ecol 23:621–634CrossRefGoogle Scholar
  27. Insausti TC, Casas J (2008) The functional morphology of color changing in a spider: development of ommochrome pigment granules. J Exp Biol 211:780–789PubMedCrossRefGoogle Scholar
  28. Insausti TC, Casas J (2009) Turnover of pigment granules: cyclic catabolism and anabolism of ommochromes within epidermal cells. Tissue Cell 41:421–429PubMedCrossRefGoogle Scholar
  29. Kelber A, Vorobyev M, Osorio D (2003) Animal colour vision—behavioural tests and physiological concepts. Biol Rev 78:81–118PubMedCrossRefGoogle Scholar
  30. Kevan P, Giurfa M, Chittka L (1996) Why are there so many and so few white flowers? Trends Plant Sci 1:252CrossRefGoogle Scholar
  31. Kevan P, Chittka L, Dyer AG (2001) Limits to the salience of ultraviolet: lessons from colour vision in bees and birds. J Exp Biol 204:2571–2580PubMedGoogle Scholar
  32. Kinoshita S (2008) Structural colors in the realm of nature. World Scientific, SingaporeCrossRefGoogle Scholar
  33. Lim MLM, Land MF, Li D (2007) Sex-specific UV and fluorescence signals in jumping spiders. Science 315:481PubMedCrossRefGoogle Scholar
  34. Llandres AL, Rodriguez-Girones MA (2011) Spider movement, UV reflectance and size, but not spider crypsis, affect the response of honeybees to Australian crab spiders. PLoS One 6:e17136PubMedCrossRefGoogle Scholar
  35. Llandres AL, Gawryszewski FM, Heiling AM, Herberstein ME (2011) The effect of colour variation in predators on the behaviour of pollinators: Australian crab spiders and native bees. Ecol Entomol 36:72–81CrossRefGoogle Scholar
  36. Losey GS, Cronin TW, Goldsmith TH, Hyde D, Marshall NJ, McFarland WN (1999) The UV visual world of fishes: a review. J Fish Biol 54:921–943CrossRefGoogle Scholar
  37. Morse DH (1981) Prey capture by the crab spider Misumena vatia (Clerck) (Thomisidae) on three common native flowers. Am Midl Nat 105:358–367CrossRefGoogle Scholar
  38. Morse DH (2007) Predator upon a flower. Harvard University Press, CambridgeGoogle Scholar
  39. Morse DH (2010) Effect of prey size on growth of newly emerged crab spiderlings Misumena vatia. J Arachnol 38:309–312CrossRefGoogle Scholar
  40. Mullen P, Pohland G (2008) Studies on UV reflection in feathers of some 1000 bird species: are UV peaks in feathers correlated with violet-sensitive and ultraviolet sensitive cones? Ibis 150:59–68CrossRefGoogle Scholar
  41. Osorio D, Vorobyev M (2008) A review of the evolution of animal colour vision and visual communication signals. Vision Res 48:2042–2051PubMedCrossRefGoogle Scholar
  42. Oxford G (1998) Guanine as a colorant in spiders: development, genetics, phylogenetics and ecology. In: Proceedings of the 17th European Colloquium of Arachnology, Edinburgh, 1997Google Scholar
  43. Oxford GS, Gillespie RG (1998) Evolution and ecology of spider coloration. Annu Rev Entomol 43:619–643PubMedCrossRefGoogle Scholar
  44. Platnick NI (2011) The world spider catalog, version 12.0. American Museum of Natural History. Online at http://research.amnh.org/iz/spiders/catalog. doi: 10.5531/db.iz.0001
  45. Riou M, Christidès JP (2010) Cryptic color change in a crab spider (Misumena vatia): identification and quantification of precursors and ommochrome pigments by HPLC. J Chem Ecol 36: 412–423PubMedCrossRefGoogle Scholar
  46. Sato Y (1987) A spider Thomisus labefactus, changing colour by reflected UV rays. Insectarium 24:118–226Google Scholar
  47. Schmalhofer VR (2000) Diet-induced and morphological color changes in juvenile crab spiders (Araneae, Thomisidae). J Arachnol 28:56–60CrossRefGoogle Scholar
  48. Seligy V (1972) Ommochrome pigments of spiders. Comp Biochem Physiol A 42:699–709CrossRefGoogle Scholar
  49. Théry M (2007) Colours of background reflected light and of the prey’s eye affect adaptive coloration in female crab spiders. Anim Behav 73:797–804CrossRefGoogle Scholar
  50. Théry M, Casas J (2002) Predator and prey views of spider camouflage. Nature 415:133PubMedCrossRefGoogle Scholar
  51. Théry M, Casas J (2009) The multiple disguises of spiders: web colour and decorations, body colour and movement. Philos Trans R Soc B 364:471–480CrossRefGoogle Scholar
  52. Vorobyev M, Osorio D (1998) Receptor noise as a determinant of colour thresholds. Proc R Soc B 265:351–358PubMedCrossRefGoogle Scholar
  53. Whiting MJ, Stuart-Fox DM, O’Connor D, Firth D, Bennet NC, Blomberg SP (2006) Ultraviolet signals ultra-aggression in a lizard. Anim Behav 72:353–363CrossRefGoogle Scholar
  54. Wilts BD, Pirih P, Stavenga DG (2011) Spectral reflectance properties of iridescent pierid butterfly wings. J Comp Physiol A 197:693–702CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marie E. Herberstein
    • 1
  • Felipe M. Gawryszewski
    • 1
  1. 1.Department of Biological SciencesMacquarie UniversityNorth RydeAustralia

Personalised recommendations