Advertisement

The Circulatory System of Spiders

  • Christian S. WirknerEmail author
  • Katarina Huckstorf
Chapter

Abstract

The spider circulatory system is a structurally complex and elaborately regulated system with a broad range of functionalities. Apart from its well-known role in metabolism and, plesiomorphically at least, in oxygen distribution, its main functions are hydraulic. This article reviews the state of knowledge on both the evolutionary and functional morphological levels.

Keywords

Subesophageal Ganglion Arterial Valve Supraneural Artery Supraesophageal Ganglion Book Lung 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abbott NJ (1971) The organization of the cerebral ganglion in the shore crab. Carcinus maenas. II. The relation of intracerebral blood vessels to other brain elements. Z Zellforsch 120:401–419CrossRefGoogle Scholar
  2. Anderson JF, Prestwich KN (1975) The fluid pressure pumps of spiders. Z Morphol Tiere 81: 257–277CrossRefGoogle Scholar
  3. Barth FG (2002) A spider’s world: senses and behavior. Springer, BerlinCrossRefGoogle Scholar
  4. Bristowe WS (1932) The Liphistiid spiders. With an appendix on their internal anatomy by J. Millot. Proc Zool Soc Lond 102:1015–1057Google Scholar
  5. Brown SK, Sherwood DN (1981) Vascularization of the crayfish abdominal nerve cord. J Comp Physiol A 143:93–101CrossRefGoogle Scholar
  6. Burmester T (2013) Evolution and adaptation of hemocyanin within spiders. In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg (this volume)Google Scholar
  7. Bursey CR, Sherman RG (1970) Spider cardiac physiology. I. Structure and function of the cardiac ganglion. Comp Genet Pharmacol 1:160–170CrossRefGoogle Scholar
  8. Carrel JE (1987) Heart rate and physiological ecology. In: Nentwig W (ed) Ecophysiology of spiders. Springer, BerlinGoogle Scholar
  9. Carrel JE, Heathcote RD (1976) Heart rate in spiders: influence of body size and foraging energetics. Science 193:148–150PubMedCrossRefGoogle Scholar
  10. Causard M (1896) Recherches sur l’appareil circulatoire des aranéides. Bull Sci France Belgique 29:1–109Google Scholar
  11. Crome W (1953) Die Respirations- und Circulationsorgane der Argyroneta aquatica Cl. (Araneae). Wiss Z Humboldt-Universität Berlin 2:53–83Google Scholar
  12. Gonzalez-Fernandez F, Sherman RG (1984) Cardioregulary nerves in the spider Eurypelma marxi Simon. J Exp Zool 231:27–37PubMedCrossRefGoogle Scholar
  13. Huckstorf K, Kosok G, Seyfarth E-A, Wirkner CS (2013) The hemolymph vascular system in Cupiennius salei (Araneae: Ctenidae). Zool Anz (in press)Google Scholar
  14. Kropf C (2013) Hydraulic system of locomotion. In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg (this volume)Google Scholar
  15. Martin AW (1974) Circulation in invertebrates. Annu Rev Physiol 36:171–186PubMedCrossRefGoogle Scholar
  16. McMahon BR, Burnett LE (1990) The crustracean open circulatory system: a reexamination. Physiol Zool 63:35–71Google Scholar
  17. McMahon BR, Wilkens JL, Smith PJS (1997) Invertebrate circulatory systems. In: Danzler WH (ed) Handbook of physiology, vol 2. Comparative physiology. American Physiological Society, New YorkGoogle Scholar
  18. Millot J (1933) Notes complementaires sur l’anatomie des liphistiides et des hypochilides, a propos d'un travail recent de A. Petrunkevitch. Bull Soc Zool France 58:217–235Google Scholar
  19. Nentwig W (2012) The species referred to as Eurypelma californicum (Theraphosidae) in more than 100 publications is likely to be Aphonopelma hentzi. J Arachnol 40:128–130CrossRefGoogle Scholar
  20. Pass G (2000) Accessory pulsatile organs: evolutionary innovations in insects. Annu Rev Entomol 45:495–518PubMedCrossRefGoogle Scholar
  21. Paul RJ, Bihlmayer S (1995) Circulatory physiology of a tarantula (Eurypelma californicum). Zoology 98:69–81Google Scholar
  22. Paul RJ, Tiling K, Focke P, Linzen B (1989) Heart and circulatory functions in a spider (Eurypelma californicum): the effects of hydraulic force generation. J Comp Physiol B 158: 673–687CrossRefGoogle Scholar
  23. Paul RJ, Bihlmayer S, Colmorgen M, Zahler S (1994) The open circulatory system of spiders (Eurypelma californicum, Pholcus phalangoides). Physiol Zool 67:1360–1382Google Scholar
  24. Petrunkevitch A (1933) An inquiry into the natural classification of spiders, based on a study of their internal anatomy. Trans Conn Acad Arts Sci 31:299–389Google Scholar
  25. Sandemann DC (1967) The vascular circulation in the brain, optic lobes and thoracic ganglia of the crab Carcinus. Proc R Soc Lond B 168:82–90CrossRefGoogle Scholar
  26. Schneider A (1892) Sur le systeme artériel du scorpion. Tabl Zool 3:157–198Google Scholar
  27. Seitz K-A (1972) Zur Histologie und Feistruktur des Herzens und der Hämocyten von Cupiennius salei KEYS. (Araneae, Ctenidae) I. Herzwandung, Bildung und Differenzierung der Hämocyten. Zool Jahrb Anat 89:351–384Google Scholar
  28. Seyfarth E-A (2002) Tactile body raising: neuronal correlates of a ‘simple’ behavior in spiders. In: Toft S, Scharff N (eds) European Arachnology 2000: Proceedings of the 19th European Colloquium of Arachnology. Aarhus University Press, AarhusGoogle Scholar
  29. Seyfarth E-A, Hammer K, Grünert U (1990) Serotonin-like immunoreactive cells in the CNS of spiders. Verh Deut Z 83:640Google Scholar
  30. Seyfarth E-A, Hammer K, Spörhase-Eichmann U, Hörner M, Vullings HG (1993) Octopamine-like immunoreactive neurons in the fused central nervous system of spiders. Brain Res 611: 197–206PubMedCrossRefGoogle Scholar
  31. Sherman RG (1973) Ultrastructural features of cardiac muscle cells in a tarantula spider. J Morphol 140:215–242PubMedCrossRefGoogle Scholar
  32. Sherman RG (1985) Neural control of the heartbeat and skeletal muscle in spiders and scorpions. In: Barth FG (ed) Neurobiology of arachnids. Springer, BerlinGoogle Scholar
  33. Sherman RG, Pax RA (1968) The heart-beat of the spider Geolycosa missouriensis. Comp Biochem Physiol 26:529–536PubMedCrossRefGoogle Scholar
  34. Sherman RG, Pax RA (1969) Electrical activity in single muscle cells of a spider heart. Comp Biochem Physiol 28:487–489PubMedCrossRefGoogle Scholar
  35. Sherman RG, Pax RA (1970a) Spider cardiac physiology. II. Responses of a tarantula heart to cholinergic compounds. Comp Gen Pharmacol 1:171–184PubMedCrossRefGoogle Scholar
  36. Sherman RG, Pax RA (1970b) The spider heart. In: Kerkut GA (ed) Experiments in physiology and biochemistry. Academic Press, LondonGoogle Scholar
  37. Stewart DM, Martin AW (1974) Blood pressure in the tarantula, Dugesiella hentzi. J Comp Physiol 88:141–172CrossRefGoogle Scholar
  38. Ude J, Richter K (1974) The submicroscopic morphology of the heart ganglion of the spider Tegenaria atrica (C.L. KOCH) and its neuroendocrine relations to the myocard. Comp Biochem Physiol A 48:301–308CrossRefGoogle Scholar
  39. Wilson RS (1967) The heartbeat of the spider, Heteropoda venatoria. J Insect Physiol 13: 1309–1326CrossRefGoogle Scholar
  40. Wilson RS (1970) Some comments on the hydrostatic system of spiders (Chelicerata, Araneae). Z Morphol Tiere 68:308–322Google Scholar
  41. Wirkner CS, Richter S (2010) Evolutionary morphology of the circulatory system in Peracarida (Malacostraca; Crustacea). Cladistics 26:143–167CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Zoology, Institute of BiosciencesUniversity of RostockRostockGermany

Personalised recommendations