T-FETI Based Algorithm for 3D Contact Problems with Orthotropic Friction

  • Jaroslav HaslingerEmail author
  • Radek Kučera
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 56)


The contribution deals with contact problems for two elastic bodies with an orthotropic Coulomb friction law. To find a solution, the method of successive approximations is combined with the augmented Lagrangian algorithm. As the problem is discretized by the T-FETI domain decomposition method, the algorithm is scalable, i.e., the number of iterations needed to achieve a prescribed accuracy can be independent of the mesh norms. The scalability is experimentally demonstrated on a model example.


Contact Problem Coulomb Friction Domain Decomposition Method Augmented Lagrangian Method Rigid Body Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bramble, J.H., Pasciak, J.E., Schatz, A.H.: The construction of preconditioners for elliptic problems by substructuring. I. Math. Comput. 47, 103–134 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Dostál, Z.: Optimal quadratic programming algorithms: with applications to variational inequalities. Springer, New York (2009)zbMATHGoogle Scholar
  3. 3.
    Dostál, Z., Horák, D., Kučera, R.: Total FETI - an easier implementable variant of the FETI method for numerical solution of elliptic PDE. Communications in Numerical Methods in Engineering 22, 1155–1162 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Dostál, Z., Kučera, R.: An optimal algorithm for minimization of quadratic functions with bounded spectrum subject to separable convex inequality and linear equality constraints. SIAM J. Optimization 20, 2913–2938 (2010)zbMATHCrossRefGoogle Scholar
  5. 5.
    Dostál, Z., Schöberl, J.: Minimizing quadratic functions over non-negative cone with the rate of convergence and finite termination. Computational Optimization and Applications 30, 23–44 (2005)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Farhat, C., Lesoinne, M., LeTallec, P., Pierson, K., Rixen, D.: FETI-DP: a dual-primal unified FETI method. I. A faster alternative to the two-level FETI method. Internat. J. Numer. Methods Engrg. 50, 1523–1544 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Farhat, C., Mandel, J., Roux, F.: Optimal convergence properties of the FETI domain decomposition method. Comput. Methods Appl. Mech. Engrg. 115, 365–385 (1994)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Glowinski, R.: Numerical methods for nonlinear variational problems. Springer Series in Computational Physics. Springer, New York (1984)zbMATHGoogle Scholar
  9. 9.
    Golub, G.H., Van Loan, C.F.: Matrix computation. The Johns Hopkins University Press, Baltimore (1996)Google Scholar
  10. 10.
    Hlaváček, I., Haslinger, J., Nečas, J., Lovíšek, J.: Numerical solution of variational inequalities. Springer Series in Applied Mathematical Sciences, vol. 66. Springer, New York (1988)CrossRefGoogle Scholar
  11. 11.
    Haslinger, J.: Approximation of the Signorini problem with friction, obeying Coulomb law. Math. Meth. Appl. 5, 422–437 (1083)Google Scholar
  12. 12.
    Haslinger, J., Hlaváček, I., Nečas, J.: Numerical methods for for unilateral problems in solid mechanics. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. IV, pp. 313–485. North-Holland, Amsterdam (1996)Google Scholar
  13. 13.
    Haslinger, J., Kučera, R., Kozubek, T.: Numerical solution of contact problems with orthotropic Coulomb friction based on quadratic programming approach with the elliptic friction cone (2011) (unpublished paper),
  14. 14.
    Kikuchi, N., Oden, J.T.: Contact problems in elasticity. SIAM, Philadelphia (1988)zbMATHGoogle Scholar
  15. 15.
    Klawonn, A., Widlund, O.B., Dryja, M.: Dual-primal FETI methods for three-dimensional elliptic problems with heterogeneous coefficients. SIAM J. Numer. Anal. 40, 159–179 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Kozubek, T., Markopoulos, A., Brzobohatý, T., Kučera, R., Vondrák, V., Dostál, Z.: MatSol - MATLAB efficient solvers for problems in engineering,
  17. 17.
    Kučera, R.: Minimizing quadratic functions with separable quadratic constraints. Optim. Meth. Soft. 22, 453–467 (2007)zbMATHCrossRefGoogle Scholar
  18. 18.
    Kučera, R.: Convergence rate of an optimization algorithm for minimizing quadratic functions with separable convex constraints. SIAM J. Optim. 19, 846–862 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Kučera, R., Kozubek, T., Markopoulos, A., Machalová, J.: On the Moore-Penrose inverse in solving saddle-point systems with singular diagonal blocks. Num. Lin. Algebra Appl. 19, 677–699 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Centre of Excellence IT4IVŠB-Technical University of OstravaOs-TravaCzech Republic

Personalised recommendations