Online Generation of Biped Robot Motion in an Unstructured Environment

Part of the Topics in Intelligent Engineering and Informatics book series (TIEI, volume 3)


In this work is demonstrated the possibility of using primitives to generate complex movements that ensure motion of bipedal humanoid robots in unstructured environments. It is pointed out that for the robot’s motion in an unstructured environment an on-line generation of motion is required. Generation of motion by using primitives represents superposition of simple movements that are easily performed. Simple movements are either reflex or learned synchronous movements of several joints, and each of these movements represents one primitive. Each primitive has its parameters and constraints that are determined on the basis of the movements capable of performing by a human. A set of all primitives represents the data base from which primitives are selected and combined for the purpose of performing a complex movement.


Robot biped robot motion humanoid robot primitive 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borovac, B., Nikolić, M., Raković, M.: How to compensate for the disturbances that jeopardize dynamic balance of a humanoid robot? International Journal of Humanoid Robotics 8, 533–578 (2011)CrossRefGoogle Scholar
  2. 2.
    Denk, J., Schmidt, G.: Synthesis of walking primitive databases for biped robots in 3d-environments. In: IEEE International Conference on Robotics and Automation, Proceedings. ICRA 2003, vol. 1, pp. 1343–1349 (2003), doi:10.1109/ROBOT.2003.1241778Google Scholar
  3. 3.
    Hauser, K., Bretl, T., Harada, K., Latombe, J.-C.: Using motion primitives in probabilistic sample-based planning for humanoid robots. In: Akella, S., Amato, N., Huang, W., Mishra, B. (eds.) Algorithmic Foundation of Robotics VII. Springer Tracts in Advanced Robotics, vol. 47, pp. 507–522. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Hirai, K., Hirose, M., Haikawa, Y., Takenaka, T.: The development of honda humanoid robot. In: Proceedings of IEEE International Conference on Robotics and Automation 1998, vol. 2, pp. 1321–1326 (1998), doi:10.1109/ROBOT.1998.677288Google Scholar
  5. 5.
    Kuffner, J., Nishiwaki, K., Kagami, S., Inaba, M., Inoue, H.: Motion planning for humanoid robots. In: Proc. 11th Int. Symp. of Robotics Research, ISRR 2003 (2003)Google Scholar
  6. 6.
    Kulić, D., Nakamura, Y.: Scaffolding on-line segmentation of full body human motion patterns. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 2860–2866 (2008), doi:10.1109/IROS.2008.4650619Google Scholar
  7. 7.
    Kulić, D., Nakamura, Y.: Incremental learning and memory consolidation of whole body human motion primitives. Adaptive Behavior - Animals, Animats, Software Agents, Robots, Adaptive Systems 17(6), 484–507 (2009),, doi:10.1177/1059712309342487Google Scholar
  8. 8.
    Mussa-Ivaldi, F.A., Giszter, S.F., Bizzi, E.: Linear combinations of primitives in vertebrate motor control. Proceedings of the National Academy of Sciences of the United States of America 91(16), 7534–7538 (1994), CrossRefGoogle Scholar
  9. 9.
    Peters, J., Schaal, S.: Policy Learning for Motor Skills. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds.) ICONIP 2007, Part II. LNCS, vol. 4985, pp. 233–242. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Potkonjak, V., Vukobratović, M., Babković, K., Borovac, B.: General model of dynamics of human and humanoid motion: feasibility, potentials and verification. International Journal of Humanoid Robotics 3, 21–48 (2006)CrossRefGoogle Scholar
  11. 11.
    Raković, M., Nikolić, M., Borovac, B.: Humanoid Robot Reaching Task Using Support Vector Machine. In: Obdržálek, D., Gottscheber, A. (eds.) EUROBOT 2011. Communications in Computer and Information Science, vol. 161, pp. 263–276. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Turner, J.D.: On the simulation of discontinuous functions. Journal of Applied Mechanics 68(5), 751–757 (2001),, doi:10.1115/1.1387022zbMATHCrossRefGoogle Scholar
  13. 13.
    Vapnik, V.N.: The nature of statistical learning theory, 2nd edn. Springer-Verlag New York, Inc., New York (2000)zbMATHGoogle Scholar
  14. 14.
    Vukobratović, M., Borovac, B.: Zero-moment point - thirty five years of its life. International Journal of Humanoid Robotics 1, 157–173 (2004)CrossRefGoogle Scholar
  15. 15.
    Vukobratović, M., Borovac, B., Potkonjak, V.: Towards a unified understanding of basic notions and terms in humanoid robotics. Robotica 25(01), 87–101 (2007)CrossRefGoogle Scholar
  16. 16.
    Vukobratović, M., Borovac, B., Raković, M.: Comparison of PID and Fuzzy Logic Controllers in Humanoid Robot Control of Small Disturbances. In: Gottscheber, A., Enderle, S., Obdrzalek, D. (eds.) EUROBOT 2008. Communications in Computer and Information Science, vol. 33, pp. 42–53. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Vukobratovic, M., Borovac, B., Raković, M., Potkonjak, V., Milinović, M.: On some aspects of humanoid robots gait synthesis and control at small disturbances. International Journal of Humanoid Robotics 5, 119–156 (2008)CrossRefGoogle Scholar
  18. 18.
    Yamaguchi, J., Soga, E., Inoue, S., Takanishi, A.: Development of a bipedal humanoid robot-control method of whole body cooperative dynamic biped walking. In: Proceedings of IEEE International Conference on Robotics and Automation 1999, vol. 1, pp. 368–374 (1999), doi:10.1109/ROBOT.1999.770006Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia

Personalised recommendations