Advertisement

Towards Long-Term Collective Experiments

  • Florian Vaussard
  • Philippe Rétornaz
  • Steven Roelofsen
  • Michael Bonani
  • François Rey
  • Francesco Mondada
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 194)

Abstract

It is often challenging to manage the battery supply when dealing with a fleet of mobile robots during long experiments. If one uses classical recharge stations, then agents are immobilized during the whole recharge process. In this study, we present a novel approach that employs a battery pack swapping station. Batteries are charged in a rotating barrel, and the robots dock only for the time of the hot-swap process. We attained an unavailability time of only 40 seconds, with a success rate of 100 % on a total of 46 trials. Experiments above 8 hours are performed in three arenas with different configurations, which proves the relevance of our approach.

Keywords

Mobile Robot Unman Aerial Vehicle Autonomous Robot Battery Pack Recharge Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonani, M., Longchamp, V., Magnenat, S., Rétornaz, P., Burnier, D., Roulet, G., Vaussard, F., Bleuler, H., Mondada, F.: The marXbot, a miniature mobile robot opening new perspectives for the collective-robotic research. In: IROS, pp. 4187–4193. IEEE (2010)Google Scholar
  2. 2.
    Cassinis, R., Tampalini, F., Bartolini, P., Fedrigotti, R.: Docking and charging system for autonomous mobile robots. Department of Electronics for Automation, University of Brescia, Italy (2005)Google Scholar
  3. 3.
    Dorigo, M., Floreano, D., Gambardella, L., Mondada, F., Nolfi, S., Baaboura, T., Birattari, M., Bonani, M., Brambilla, M., Brutschy, A., et al.: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. Tech. rep., Technical Report TR/IRIDIA/2011-014, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium (2011)Google Scholar
  4. 4.
    Kemper, F.P., Suzuki, K.A.O., Morrison, J.R.: UAV Consumable Replenishment: Design Concepts for Automated Service Stations. Journal of Intelligent and Robotic Systems 61(1-4), 369–397 (2011)CrossRefGoogle Scholar
  5. 5.
    Kim, K., Choi, H., Yoon, S., Lee, K., Ryu, H., Woo, C., Kwak, Y.: Development of docking system for mobile robots using cheap infrared sensors. In: 1st International Conference on Sensing Technology, Palmerston North, New Zealand (2005)Google Scholar
  6. 6.
    Krieger, M.J.B., Billeter, J.B.: The call of duty: Self-organised task allocation in a population of up to twelve mobile robots. Robotics and Autonomous Systems 30(1-2), 65–84 (2000)CrossRefGoogle Scholar
  7. 7.
    Magnenat, S., Rétornaz, P., Bonani, M., Longchamp, V., Mondada, F.: ASEBA: A Modular Architecture for Event-Based Control of Complex Robots. IEEE/ASME Transactions on Mechatronics (2010)Google Scholar
  8. 8.
    Mondada, F., Pettinaro, G., Guignard, A., Kwee, I., Floreano, D., Deneubourg, J., Nolfi, S., Gambardella, L., Dorigo, M.: SWARM-BOT: A new distributed robotic concept. Autonomous Robots 17(2), 193–221 (2004)CrossRefGoogle Scholar
  9. 9.
    Parker, G., Georgescu, R., Northcutt, K.: Continuous power supply for a robot colony. In: Proceedings of World Automation Congress 2004, vol. 15, pp. 279–286. IEEE (2004)Google Scholar
  10. 10.
    Parker, G.B., Zbeda, R.S.: Controlled use of a robot colony power supply. In: 2005 IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 3491–3496. IEEE (2005)Google Scholar
  11. 11.
    Silverman, M., Jung, B., Nies, D., Sukhatme, G.: Staying alive longer: Autonomous robot recharging put to the test. Center for Robotics and Embedded Systems (CRES) Technical Report CRES 3, 015 (2003)Google Scholar
  12. 12.
    Silverman, M.C., Nies, D., Jung, B., Sukhatme, G.S.: Staying Alive: A Docking Station for Autonomous Robot Recharging.. In: ICRA, pp. 1050–1055. IEEE (2002)Google Scholar
  13. 13.
    Stroupe, A.W., Okon, A., Robinson, M.L., Huntsberger, T., Aghazarian, H., Baumgartner, E.T.: Sustainable cooperative robotic technologies for human and robotic outpost infrastructure construction and maintenance. Auton. Robots 20(2), 113–123 (2006)CrossRefGoogle Scholar
  14. 14.
    Suzuki, K.A.O., Filho, P.K., Morrison, J.R.: Automatic Battery Replacement System for UAVs: Analysis and Design. Journal of Intelligent and Robotic Systems 65(1-4), 563–586 (2012)CrossRefGoogle Scholar
  15. 15.
    Swieringa, K.A., Hanson, C.B., Richardson, J.R., White, J.D., Hasan, Z., Qian, E., Girard, A.: Autonomous battery swapping system for small-scale helicopters. In: ICRA, pp. 3335–3340. IEEE (2010)Google Scholar
  16. 16.
    Valenti, M., Bethke, B., Dale, D., Frank, A.A., McGrew, J.S., Ahrens, S., How, J.P., Vian, J.: The MIT Indoor Multi-Vehicle Flight Testbed. In: ICRA, pp. 2758–2759. IEEE (2007)Google Scholar
  17. 17.
    Wang, H., Xu, H., Jones, A.: Crucial Issues in Logistic Planning for Electric Vehicle Battery Application Service. In: 2010 International Conference on Optoelectronics and Image Processing (ICOIP), vol. 1, pp. 362–366. IEEE (2010)Google Scholar
  18. 18.
    Wu, Y., Teng, M., Tsai, Y.: Robot docking station for automatic battery exchanging and charging. In: IEEE International Conference on Robotics and Biomimetics, ROBIO 2008, pp. 1043–1046. IEEE (2009)Google Scholar
  19. 19.
    Yang, Y., Ding, X., Zhu, J.: Discuss Charging-Discharging and Sale Technology of the Electric Vehicle. Advanced Materials Research 347, 3908–3914 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Florian Vaussard
    • 1
  • Philippe Rétornaz
    • 1
  • Steven Roelofsen
    • 1
  • Michael Bonani
    • 1
  • François Rey
    • 1
  • Francesco Mondada
    • 1
  1. 1.EPFL – STI – LSROLausanneSwitzerland

Personalised recommendations