Advertisement

A Distributed Kinodynamic Collision Avoidance System under ROS

  • Nicoló BoscoloEmail author
  • Riccardo De Battisti
  • Matteo Munaro
  • Alessandro Farinelli
  • Enrico Pagello
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 194)

Abstract

This paper focuses on decentralized coordination for small or medium groups of heterogeneous mobile robots with relatively low computational resources. Specifically, we consider coordinated obstacle avoidance techniques for mobile platforms performing high level tasks, such as patrolling or exploration. In more details, we propose the use of a greedy kinodynamic collision avoidance approach for the single robots and the use of the the Max-sum algorithm for multi-robot coordination. The system implementation and its testing are based on the popular robot middleware ROS and the gazebo simulation environment. Obtained results show that our distributed collision avoidance approach is able to achieve safe navigation in real-time with a very low overhead in terms of computation and communication.

Keywords

Collision Avoidance Local Goal Factor Graph Robot Position Global Goal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aji, S.M., McEliece, R.J.: The generalized distributive law. IEEE Transactions on Information Theory 46(2), 325–343 (2000), doi:10.1109/18.825794MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bekris, K.E., Tsianos, K., Kavraki, L.E.: Safe and distributed kinodynamic replanning for vehicular networks. Mobile Networks and Applications 14(3) (2009)Google Scholar
  3. 3.
    Van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: IEEE International Conference on Robotics and Automation 2008, pp. 1928–1935. IEEE (2008)Google Scholar
  4. 4.
    Brock, O., Khatib, O.: High-speed navigation using the global dynamic window approach. In: IEEE International Conference on Robotics and Automation 1999, vol. 1, pp. 341–346. IEEE (1999)Google Scholar
  5. 5.
    Bruce, J., Veloso, M.: Safe multi-robot navigation within dynamics constraints. In: Proceedings of the IEEE, Special Issue on Multi-Robot Systems (2006)Google Scholar
  6. 6.
    Chan, N., Kuffner, J., Zucker, M.: Improved motion planning speed and safety using regions of inevitable collision. In: 17th CISM-IFToMM Symposium on Robot Design, Dynamics, and Control, RoManSy 2008 (2008)Google Scholar
  7. 7.
    Clark, C., Rock, S.M., Latombe, J.-C.: Motion planning for multiple mobile robot systems using dynamic networks. In: IEEE Int. Conference on Robotics and Automation, pp. 4222–4227 (2003)Google Scholar
  8. 8.
    Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. The International Journal of Robotics Research 17(7), 760–772 (1998)CrossRefGoogle Scholar
  9. 9.
    Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE Robotics & Automation Magazine 4(1), 23–33 (1997)CrossRefGoogle Scholar
  10. 10.
    Fraichard, T., Asama, H.: Inevitable collision states. a step towards safer robots? In: Intelligent Robots and Systems 2003, vol. 1, pp. 388–393 (2003), doi:10.1109/IROS.2003.1250659Google Scholar
  11. 11.
    Guestrin, C., Koller, D., Parr, R.: Multiagent planning with factored MDPs (2001)Google Scholar
  12. 12.
    Hart, P., Nilsson, N., Raphael, B.: A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics 4(2), 100–107 (1968), doi:10.1109/TSSC.1968.300136CrossRefGoogle Scholar
  13. 13.
    Kalisiak, M., van de Panne, M.: Faster motion planning using learned local viability models. In: ICRA 2007, pp. 2700–2705 (2007)Google Scholar
  14. 14.
    Kschischang, F.R., Frey, B.J., Loeliger, H.-A.: Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory 47, 498–519 (1998)MathSciNetCrossRefGoogle Scholar
  15. 15.
    LaValle, S.M., Kuffner Jr., J.J.: Randomized kinodynamic planning (1999)Google Scholar
  16. 16.
    Van Den Berg, J., Guy, S., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. Robotics Research, 3–19 (2011)Google Scholar
  17. 17.
    Wikman, T.S., Branicky, M.S., Newman, W.S.: Reflexive collision avoidance: A generalized approach. In: ICRA (3), pp. 31–36 (1993)Google Scholar
  18. 18.
    Yang, Y., Brock, O.: Elastic roadmaps–motion generation for autonomous mobile manipulation. Auton. Robots 28, 113–130 (2010), doi: http://dx.doi.org/10.1007/s10514-009-9151-x Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nicoló Boscolo
    • 1
    Email author
  • Riccardo De Battisti
    • 1
  • Matteo Munaro
    • 1
  • Alessandro Farinelli
    • 2
  • Enrico Pagello
    • 1
  1. 1.Department of Information EngineeringUniversity of PadovaPadovaItaly
  2. 2.Department of Computer ScienceUniversity of VeronaVeronaItaly

Personalised recommendations