Effect of Mediolateral Knee Displacement on Ligaments and Muscles around Knee Joint: Quantitative Analysis with Three-Dimensional Musculoskeletal Ligament Knee Model

  • Yuki Ishikawa
  • Qi An
  • Yusuke Tamura
  • Atsushi Yamashita
  • Hiroyuki Oka
  • Hajime Asama
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 194)


Knee osteoarthritis (OA) becomes a major public issue, but a strategy to prevent the disease has not established yet due to lack of an accurate method to measure an internal motion of the knee of individual patients. Therefore mechanical engineering model and a standard of evaluation of the disease is needed to improve the situation. Currently, there are a few studies to develop the model including allowance of joint movement and ligaments. Thus this study shows the model accuracy by forward dynamics and discusses the result of inverse dynamics of various gait patterns. As a result, it can be confirmed that ligaments are more effective than muscles around knee joint with our various models. In addition we propose the important factor of knee OA from gait pattern and models.


Anterior Cruciate Ligament Knee Joint Medial Collateral Ligament Gait Pattern Lateral Collateral Ligament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    March, L.M., Bachmeier, C.J.M.: Economics of Osteoarthritis a Global Perspective. Bail. Clin. Rheumatol. 11(4), 817–834 (1997)CrossRefGoogle Scholar
  2. 2.
    Shelburene, K.B., Pandy, M.G., Torry, M.R.: Comparison of Shear Forces and Ligament Loading in the Healthy and ACL-deficient Knee during Gait. Journal of Biomechanics 37(3), 313–319 (2004)CrossRefGoogle Scholar
  3. 3.
    Yeow, C.H., Cheong, C.H., Ng, K.S., Sin Lee, P.V., Hong Goh, J.C.: Anterior Cruciate Ligament Failure and Cartilage Damage during Knee Joint Compression: a Preliminary Study Based on the Porcine Model. The American Journal of Sports Medicine 36(5), 934–942 (2008)CrossRefGoogle Scholar
  4. 4.
    Shin, C.S., Chaudhari, A.M., Andriacchi, T.P.: The Influence of Deceleration Forces on ACL Strain during Single-leg Landing: A Simulation Study. Journal of Biomechanics 40(5), 1145–1152 (2007)CrossRefGoogle Scholar
  5. 5.
    Foroughi, N., Smith, R., Vanwanseele, B.: The Association of External Knee Adduction Moment with Biomechanical Variables in Osteoarthritis: A Systematic Review. Knee 16(5), 303–309 (2009)CrossRefGoogle Scholar
  6. 6.
    Shelburne, K.B., Kim, H.J., Sterett, W.I., Pandy, M.G.: Effect of Posterior Tibial Slope on Knee Biomechanics during Functional Activity. Journal of Orthopaedic Research 29(2), 223–231 (2011)CrossRefGoogle Scholar
  7. 7.
    Blankevoort, L., Huiskes, R.: Ligament-Bone Interaction in a Three-Dimensional Model of the Knee. Journal of Biomechanical Engineering 113(3), 263–269 (1991)CrossRefGoogle Scholar
  8. 8.
    Neptune, R.R., Wright, I.C., Van Den Bogert, A.J.: A Method for Numerical Simulation of Single Limb Ground Contact Events: Application to Heel-Toe Running. Computer Methods in Biomechanics and Biomedical Engineering 3(4), 321–334 (2000)CrossRefGoogle Scholar
  9. 9.
    Fukubayashi, T., Torzilli, P.A., Sherman, M.F., Warren, R.F.: An in Vitro Biomechanical Evaluation of Anterior-posterior Motion of the Knee. Tibial Displacement, Rotation, and Torque. The Journal of Bone & Joint Surgery 64A(2), 960–968 (1982)Google Scholar
  10. 10.
    Daniel, D.M., Malcom, L.L., Losse, G., Stone, M.L., Sachs, R., Burks, R.: Instrumented Measurement of Anterior Laxity of the Knee. The Journal of Bone & Joint Surgery 67A(5), 720–726 (1985)Google Scholar
  11. 11.
    Shoemaker, S.C., Markolf, K.I.: Effect of Joint Load on the Stiffness and Laxity of Ligament-Deficient Knees. Journal of Bone & Joint Surgery 67A(1), 136–146 (1985)Google Scholar
  12. 12.
    Lim, H., Lee, Y., Wang, J., Park, J., Suh, D., Kim, Y., Bae, J.: Anterior and Posterior Knee Laxity in a Young Adult Korean Population. Knee Surgery Sports Traumatology Arthroscopy 19(11), 1890–1894 (2011)CrossRefGoogle Scholar
  13. 13.
    LaPrade, R.F., Wozniczka, J.K., Stellmaker, M.P., Wijdicks, C.A.: Analysis of the Static Function of the Popliteus Tendon and Evaluation of an Anatomic Reconstruction: The Fifth Ligament of the Knee. The American Journal of Sports Medicine 38(3), 543–549 (2010)CrossRefGoogle Scholar
  14. 14.
    Ahrens, P., Kirchhoff, C., Fischer, F., Heinrich, P., Eisenhart-Rothe, R., Hinterwimmer, S., Kirchhoff, S., Imhoff, A., Lorenz, S.: A Novel Tool for Objective Assessment of Femorotibial Rotation: a Cadaver Study. International Orthopaedics 35(11), 1611–1620 (2011)CrossRefGoogle Scholar
  15. 15.
    Coobs, B., LaPrade, R., Griffith, C., Nelson, B.: Biomechanical Analysis of an Isolated Fibular (Lateral) Collateral Ligament Reconstruction using an Autogenous Semitendinosus Graft. The American Journal of Sports Medicine 35(9), 1521–1527 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yuki Ishikawa
    • 1
  • Qi An
    • 1
  • Yusuke Tamura
    • 2
  • Atsushi Yamashita
    • 1
  • Hiroyuki Oka
    • 3
  • Hajime Asama
    • 1
  1. 1.Department of Precision Engineering, Graduated School of EngineeringThe University of TokyoTokyoJapan
  2. 2.Department of Precision Mechanics, Faculty of Science and EngineeringChuo UniversityTokyoJapan
  3. 3.The 22nd Century Medical and Research Center, Graduated School of MedicineThe University of TokyoTokyoJapan

Personalised recommendations