Intelligent Autonomous Systems 12 pp 345-353

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 193) | Cite as

Panoramic 3D Reconstruction with Three Catadioptric Cameras

Abstract

In this paper, we present a new system setup combining three catadioptric cameras. Our application is in autonomous vehicles. This camera setup allows for panoramic stereo vision of the environment and therefore proves to be useful for ego motion estimation and localization by 3D feature points all around the vehicle. The three catadioptric cameras are arranged in a triangle on top of the vehicle and are horizontally aligned. In the paper we discuss two methods for 3D scene point reconstruction with the system. We perform experiments for the 3D reconstruction in a simulated environment and evaluate the accuracy by means of a Monte-Carlo-Simulation. The proposed system improves the mean accuracy of the 3D reconstruction significantly compared to a system with two cameras.

Keywords

catadioptric camera 3D reconstruction stereo vision 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, S., Nayar, S.K.: A theory of single-viewpoint catadioptric image formation. International Journal of Computer Vision 35(1), 1–22 (1999)Google Scholar
  2. 2.
    Baldwin, J., Basu, A.: 3d estimation using panoramic stereo. In: 2000 Proceedings of the 15th International Conference on Pattern Recognition, vol. 1, pp. 97–100 (2000), doi:10.1109/ICPR.2000.905283Google Scholar
  3. 3.
    Benosman, R., Kang, S.E.: Panoramic vision: sensors, theory, and applications. Springer-Verlag New York, Inc., Secaucus (2001)MATHGoogle Scholar
  4. 4.
    Cheng, S.Y., Trivedi, M.M.: Toward a comparative study of lane tracking using omni-directional and rectilinear images for driver assistance systems. In: ICRA 2007 Workshop: Planning, Perception and Navigation for Intelligent Vehicles (2007)Google Scholar
  5. 5.
    Ehlgen, T., Pajdla, T., Ammon, D.: Eliminating blind spots for assisted driving 9(4), 657–665 (2008)Google Scholar
  6. 6.
    Gandhi, T., Trivedi, M.: Vehicle surround capture: Survey of techniques and a novel omni-video-based approach for dynamic panoramic surround maps 7(3), 293–308 (2006)Google Scholar
  7. 7.
    Geyer, C., Daniilidis, K.: A Unifying Theory for Central Panoramic Systems and Practical Implications. In: Vernon, D. (ed.) ECCV 2000, Part II. LNCS, vol. 1843, pp. 445–461. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Gluckman, J., Nayar, S.K., Thoresz, K.J.: Real-time omnidirectional and panoramic stereo. In: Proceedings of the 1998 DARPA Image Understanding Workshop, pp. 299–303. Morgan Kaufmann (1998)Google Scholar
  9. 9.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2004) ISBN: 0521540518Google Scholar
  10. 10.
    Scaramuzza, D., Martinelli, A., Siegwart, R.: A flexible technique for accurate omnidirectional camera calibration and structure from motion. In: IEEE International Conference on Computer Vision Systems, ICVS 2006, p. 45 (2006), doi:10.1109/ICVS.2006.3Google Scholar
  11. 11.
    Scaramuzza, D., Siegwart, R.: Monocular Omnidirectional Visual Odometry for Outdoor Ground Vehicles. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 206–215. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Schönbein, M., Kitt, B., Lauer, M.: Environmental perception for intelligent vehicles using catadioptric stereo vision systems. In: Proceedings of the 5th European Conference on Mobile Robots (ECMR), Örebro, Schweden (2011)Google Scholar
  13. 13.
    Svoboda, T., Pajdla, T.: Epipolar geometry for central catadioptric cameras. Int. J. Comput. Vision 49(1), 23–37 (2002), http://dx.doi.org/10.1023/A:1019869530073 MATHCrossRefGoogle Scholar
  14. 14.
    Yi, S., Ahuja, N.: An omnidirectional stereo vision system using a single camera. In: ICPR 2006: Proceedings of the 18th International Conference on Pattern Recognition, pp. 861–865. IEEE Computer Society, Washington, DC (2006), http://dx.doi.org/10.1109/ICPR.2006.263 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Measurement and Control SystemsKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations