Advertisement

Advanced Perception for Robots in a Closed World Environment

  • Mahmoud El ShaikhEmail author
  • Andreas Koch
  • Bernd Eckstein
  • Kai Häussermann
  • Oliver Zweigle
  • Paul Levi
Chapter
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 193)

Abstract

A basic requirement for all mobile robots is a precise, accurate and fast perception of the environment to allow intelligent behavior through interaction with its surrounding. This paper introduces a new method for a reliable, fast and efficient purely omni-directional vision based mobile robot navigation for a closed world environment. The proposed method enables a robot that is driving at a high-speed to detect and classify different objects of different colors by only calibrating one dominant environment color. The correctness and the effectiveness of the introduced approach was evaluated successfully in the highly dynamical RoboCup Middle Size Soccer scenario.

Keywords

Search Space Mobile Robot Color Intensity Radial Line Calibration Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, J., Weser, M., Jockel, S.: Fuzzy multisensor fusion for autonomous proactive robot perceptionGoogle Scholar
  2. 2.
    Ruzon, M.A., Tomasi, C.: Edge, junction, and corner detection using color distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1281–1295 (2001)CrossRefGoogle Scholar
  3. 3.
    Altunbasak, Y., Eren, P.E., Tekalp, A.M.: Region-based parametric motion segmentation using color information. Graphical Models and Image Processing 60(1), 13–23 (1998)CrossRefGoogle Scholar
  4. 4.
    Ikonomakis, N., Plataniotis, K.N., Venetsanopoulos, A.N.: A region-based color image segmentation scheme. In: Proc. of the SPIE: Visual Communications and Image Processing, Citeseer, vol. 3653, pp. 1202–1209 (1999)Google Scholar
  5. 5.
    Ikonomatakis, N., Plataniotis, K.N., Zervakis, M., Venetsanopoulos, A.N.: Region growing and region merging image segmentation. In: 1997 13th International Conference on Digital Signal Processing Proceedings, DSP 1997, vol. 1, pp. 299–302. IEEE (1997)Google Scholar
  6. 6.
    Quan, Z.G., Ming, L.Z.: Research on preprocessing of color image for vision based mobile robot navigation. Inform. Technol. J. 10, 597–601 (2011)CrossRefGoogle Scholar
  7. 7.
    Posada, L.F., Narayanan, K.K., Hoffmann, F., Bertram, T.: Floor segmentation of omnidirectional images for mobile robot visual navigation. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 804–809. IEEE (2010)Google Scholar
  8. 8.
    Li, Y., Feng, Z., Sheng, H.: A method of recognizing objects specified by color and shape in autonomous robot. In: 2010 IEEE International Conference on Information and Automation (ICIA), pp. 2466–2470. IEEE (2010)Google Scholar
  9. 9.
    Hengst, B., Ibbotson, D., Pham, S.B., Sammut, C.: The unsw united 2000 sony legged robot software system. In: RoboCup 2000: Robot Soccer World Cup IV. Citeseer (2001)Google Scholar
  10. 10.
    Bruce, J., Balch, T., Veloso, M.: Fast and inexpensive color image segmentation for interactive robots. In: Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000), vol. 3, pp. 2061–2066. IEEE (2000)Google Scholar
  11. 11.
    Oberasche, L.: Interaction of colour and light: Simulation and assessment under artificial and natural light (2011)Google Scholar
  12. 12.
    Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Syst. J. 4, 25–30 (1965)CrossRefGoogle Scholar
  13. 13.
    Halsted, C.P.: Halsted. Brightness, luminance, and Confusion (1993)Google Scholar
  14. 14.
    Damien Douxchamps. libdc1394: Api version 2: Conversions, http://damien.douxchamps.net/ieee1394/libdc1394/v2.x/api/conversions (accessed September 13, 2011)
  15. 15.
    RoboCup. Soccer middle size league, http://www.robocup.org/robocup-soccer/middle-size (accessed September 13, 2011)

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mahmoud El Shaikh
    • 1
    Email author
  • Andreas Koch
    • 2
  • Bernd Eckstein
    • 2
  • Kai Häussermann
    • 2
  • Oliver Zweigle
    • 2
  • Paul Levi
    • 2
  1. 1.German University of CairoNew CairoEgypt
  2. 2.University of StuttgartStuttgartGermany

Personalised recommendations