Optimal Control of Diffusion-Convection-Reaction Equations Using Upwind Symmetric Interior Penalty Galerkin (SIPG) Method

Conference paper

Abstract

We discuss the numerical solution of linear quadratic optimal control problem with distributed and Robin boundary controls governed by diffusion convection reaction equations. The discretization is based on the upwind symmetric interior penalty Galerkin (SIPG) methods which lead to the same discrete scheme for the optimize-then-discretize and the discretize-then-optimize.

References

  1. 1.
    Bartlett, R., Heinkenschloss, M., Ridzal, D., van Bloemen, B.W.: Domain decomposition methods for advection dominated linear-quadratic elliptic optimal control problems. Comp. Meth. Appl. Mech. Eng. 195, 6428–6447 (2006)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Becker, R., Vexler, B.: Optimal control of the convection-diffusion equation using stabilized finite element methods. Numer. Math. 106, 349–367 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ben Belgacem, F., El Fekih, H., Metoui, H.: Singular perturbation for the Dirichlet boundary control of elliptic problems. M2AN Math. Model. Numer. Anal. 37, 883–850 (2003)Google Scholar
  4. 4.
    Collis, S.S., Heinkenschloss, M.: Analysis of the streamline upwind/Petrov Galerkin method applied to the solution of optimal control problems. Tech. Rep. TR02-01, Department of Computational and Applied Mathematics, Rice University (2002)Google Scholar
  5. 5.
    Houston, P., Schwab, C., Süli, E.: Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39, 2133–2163 (2002)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Kunisch, K., Vexler, B.: Constrained Dirichlet boundary control in L 2 for a class of evolution equations. SIAM J. Contr. Optim. 46, 1726–1753 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Leykekhman, D.: Investigation of commutative properties of discontinuous Galerkin methods in PDE constrained optimal control problems. J. Sci. Comput. 53, 483–511 (2012)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Leykekhman, D., Heinkenschloss, M.: Local error analysis of discontinuous Galerkin methods for advection-dominated elliptic linear-quadratic optimal control problems. SIAM J. Numer. Anal. 50, 2012–2038 (2012)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)CrossRefMATHGoogle Scholar
  10. 10.
    Lube, G., Tews, B.: Distributed and boundary control of singularly perturbed advection-diffusion-reaction problems. In: BAIL 2008-Boundary and Interior Layers. Lecture Notes in Computational Science and Engineering, vol. 69, pp. 205–214. Springer, Berlin (2009)Google Scholar
  11. 11.
    Lube, G., Tews, B.: Optimal control of singularly perturbed advection-diffusion-reaction problems. Math. Model. Meth. Appl. Sci. 20, 375–395 (2010)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. Theory and Implementation. Frontiers in Applied Mathematics, vol. 35. SIAM, Philadelphia (2008)Google Scholar
  13. 13.
    Schötzau D., Zhu, L.: A robust a-posteriori error estimator for discontinuous Galerkin methods for convection-diffusion equations. Appl. Numer. Math. 59, 2236–2255 (2009)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Tröltzsch, F.: Optimal Control of Partial Differential Equations. Theory, Methods and Applications. American Mathematical Society, Providence (2010)Google Scholar
  15. 15.
    Vexler, B.: Finite element approximation of elliptic Dirichlet optimal control problems. Numer. Funct. Anal. Optim. 28, 957–973 (2007)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Yan, N., Zhou, Z.: A priori and a posteriori error analysis of edge stabilization Galerkin method for the optimal control problems governed by convection-dominated diffusion equation. J. Comput. Appl. Math. 223, 198–217 (2009)MathSciNetCrossRefADSMATHGoogle Scholar
  17. 17.
    Yücel, H., Heikenschloss, M., Karaszen, B.: Distributed optimal control of diffusion-convection-reaction equations using discontinuous Galerkin methods. In: Proceedings of ENUMATH 2011. Springer, Berlin (2013)Google Scholar
  18. 18.
    Zhou, Z., Yan, N.: The local discontinuous Galerkin method for optimal control problem governed by convection-diffusion equations. Int. J. Numer. Anal. Model. 7, 681–699 (2010)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Mathematics and Institute of Applied MathematicsMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations