Distributed Autonomous Morphogenesis in a Self-Assembling Robotic System

Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

We present distributed morphogenesis control strategies in a swarm of robots able to autonomously assemble into 3D symbiotic organisms to perform specific tasks. Each robot in such a system can work autonomously, while teams of robots can self-assemble into various morphologies when required. The idea is to combine the advantages of swarm and self-reconfigurable robotic systems in order to investigate and develop novel principles of development and adaptation for “robotic organisms”, from bio-inspired and evolutionary perspectives. Unlike other modular self-reconfigurable robotic systems, individual robots here are independently mobile and can autonomously dock to each other. The goal is that the robots initially form a certain 2D planar structure and, based on their positions in the body plan, the aggregated “organism” should lift itself to form a 3D configuration, then move and function as a macroscopic whole. It should also be able to disassemble and reassemble into different morphologies to fulfil certain task requirements.

References

  1. 1.
    Christensen, A., O’Grady, R., Dorigo, M.: Swarmorph-script: a language for arbitrary morphology generation in self-assembling robots. Swarm Intell. 2(2), 143–165 (2008). doi:10.1007/s11721-008-0012-6 CrossRefGoogle Scholar
  2. 2.
    Doursat, R.: Organically grown architectures: creating decentralized, autonomous systems by embryomorphic engineering. In: Würtz R.P. (ed.) Organic Computing, Understanding Complex Systems, vol. 21, pp. 167–199. Springer, Berlin (2008). doi:10.1007/978-3-540-77657-4_8Google Scholar
  3. 3.
    Gross, R., Dorigo, M.: Self-assembly at the macroscopic scale. Proc. IEEE 96(9), 1490–1508 (2008). doi:10.1109/JPROC.2008.927352 CrossRefGoogle Scholar
  4. 4.
    Grushin, A., Reggia, J.A.: Automated design of distributed control rules for the self-assembly of prespecified artificial structures. Robot. Auton. Syst. 56(4), 334–359 (2008). doi:10.1016/j.robot.2007.08.006 CrossRefGoogle Scholar
  5. 5.
    Guo, H., Meng, Y., Jin, Y.: A cellular mechanism for multi-robot construction via evolutionary multi-objective optimization of a gene regulatory network. Biosystems 98(3), 193–203 (2009). doi:10.1016/j.biosystems.2009.05.003 CrossRefGoogle Scholar
  6. 6.
    Kernbach, S., Meister, E., Scholz, O., Humza, R., Liedke, J., Ricotti, L., Jemai, J., Havlik, J., Liu, W.: Evolutionary robotics: the next-generation-platform for on-line and on-board artificial evolution. In: Proceedings of IEEE congress on Evolutionary Computation, pp. 1079–1086. Trondheim, Norway (2009). doi:10.1109/CEC.2009.4983066
  7. 7.
    Levi, P., Kernbach, S. (eds.): Symbiotic Multi-Robot Organisms: Reliability, Adaptability, Evolution. Springer, Heidelberg (2010)Google Scholar
  8. 8.
    Liu, W., Winfield, A.: Implementation of an IR approach for autonomous docking in a self-configurable robotics system. In: Kyriacou, T. Nehmzow, U. Melhuish, C. Witkowski, M. (eds.) Proceedings of Towards Autonomous Robotic Systems, pp. 251–258 (2009)Google Scholar
  9. 9.
    Murata, S., Kakomura, K., Kurokawa, H.: Toward a scalable modular robotic system. IEEE Robot. Autom. Mag. 14(4), 56–63 (2007). doi:10.1109/M-RA.2007.908984 CrossRefGoogle Scholar
  10. 10.
    Nagpal, R.: Programmable self-assembly: constructing global shape using biologically-inspired local interactions and origami mathematics. Ph.D. Thesis, Massachusetts Institute of Technology (2001)Google Scholar
  11. 11.
    Rubenstein, M., Payne, K., Will, P., Shen, W.M.: Docking among independent and autonomous conro self-reconfigurable robots. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 3, pp. 2877–2882 (2004). doi:10.1109/ROBOT.2004.1307497
  12. 12.
    Salemi, B., Moll, M., Shen, W.M.: SUPERBOT: a deployable, multi-functional, and modular self-reconfigurable robotic system. In: Proceedings of Intenational Conference on Intelligent Robots and Systems, pp. 3636–3641. Beijing, China (2006)Google Scholar
  13. 13.
    Støy, K.: Using cellular automata and gradients to control self-reconfiguration. Robot. Auton. Syst. 54, 135–141 (2006). doi:10.1016/j.robot.2005.09.017 CrossRefGoogle Scholar
  14. 14.
    Vaughan, R.: Massively multi-robot simulation in stage. Swarm Intell. 2(2–4), 189–208 (2008). doi:10.1007/s11721-008-0014-4 CrossRefGoogle Scholar
  15. 15.
    Werfel, J.: Biologically realistic primitives for engineered morphogenesis. In: the Seventh International Conference on Swarm Intelligence (ANTS2010), pp. 131–142. Springer, Belgium (2010). doi:10.1007/978-3-642-15461-4_12Google Scholar
  16. 16.
    Yim, M., White, P., Park, M., Sastra, J.: Modular self-reconfigurable robots. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 5618–5631. Springer, New York (2009). doi:10.1007/978-0-387-30440-3_334Google Scholar
  17. 17.
    Yim, M., Zhang, Y., Roufas, K., Duff, D., Eldershaw, C.: Connecting and disconnecting for chain self-reconfiguration with polybot. IEEE/ASME Trans. Mechatron. 7(4), 442–451 (2002). doi:10.1109/TMECH.2002.806221 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Bristol Robotics Laboratory (BRL)University of the West of EnglandBristolUK

Personalised recommendations