Distributed Autonomous Morphogenesis in a Self-Assembling Robotic System

  • Wenguo Liu
  • Alan F. T. Winfield
Part of the Understanding Complex Systems book series (UCS)


We present distributed morphogenesis control strategies in a swarm of robots able to autonomously assemble into 3D symbiotic organisms to perform specific tasks. Each robot in such a system can work autonomously, while teams of robots can self-assemble into various morphologies when required. The idea is to combine the advantages of swarm and self-reconfigurable robotic systems in order to investigate and develop novel principles of development and adaptation for “robotic organisms”, from bio-inspired and evolutionary perspectives. Unlike other modular self-reconfigurable robotic systems, individual robots here are independently mobile and can autonomously dock to each other. The goal is that the robots initially form a certain 2D planar structure and, based on their positions in the body plan, the aggregated “organism” should lift itself to form a 3D configuration, then move and function as a macroscopic whole. It should also be able to disassemble and reassemble into different morphologies to fulfil certain task requirements.


Finite State Machine Recruitment Strategy Tree Representation Swarm Size Individual Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The SYMBRION project is funded by the European Commission within the work programme Future and Emergent Technologies Proactive under grant agreement no. 216342.


  1. 1.
    Christensen, A., O’Grady, R., Dorigo, M.: Swarmorph-script: a language for arbitrary morphology generation in self-assembling robots. Swarm Intell. 2(2), 143–165 (2008). doi: 10.1007/s11721-008-0012-6 CrossRefGoogle Scholar
  2. 2.
    Doursat, R.: Organically grown architectures: creating decentralized, autonomous systems by embryomorphic engineering. In: Würtz R.P. (ed.) Organic Computing, Understanding Complex Systems, vol. 21, pp. 167–199. Springer, Berlin (2008). doi:10.1007/978-3-540-77657-4_8Google Scholar
  3. 3.
    Gross, R., Dorigo, M.: Self-assembly at the macroscopic scale. Proc. IEEE 96(9), 1490–1508 (2008). doi: 10.1109/JPROC.2008.927352 CrossRefGoogle Scholar
  4. 4.
    Grushin, A., Reggia, J.A.: Automated design of distributed control rules for the self-assembly of prespecified artificial structures. Robot. Auton. Syst. 56(4), 334–359 (2008). doi: 10.1016/j.robot.2007.08.006 CrossRefGoogle Scholar
  5. 5.
    Guo, H., Meng, Y., Jin, Y.: A cellular mechanism for multi-robot construction via evolutionary multi-objective optimization of a gene regulatory network. Biosystems 98(3), 193–203 (2009). doi: 10.1016/j.biosystems.2009.05.003 CrossRefGoogle Scholar
  6. 6.
    Kernbach, S., Meister, E., Scholz, O., Humza, R., Liedke, J., Ricotti, L., Jemai, J., Havlik, J., Liu, W.: Evolutionary robotics: the next-generation-platform for on-line and on-board artificial evolution. In: Proceedings of IEEE congress on Evolutionary Computation, pp. 1079–1086. Trondheim, Norway (2009). doi: 10.1109/CEC.2009.4983066
  7. 7.
    Levi, P., Kernbach, S. (eds.): Symbiotic Multi-Robot Organisms: Reliability, Adaptability, Evolution. Springer, Heidelberg (2010)Google Scholar
  8. 8.
    Liu, W., Winfield, A.: Implementation of an IR approach for autonomous docking in a self-configurable robotics system. In: Kyriacou, T. Nehmzow, U. Melhuish, C. Witkowski, M. (eds.) Proceedings of Towards Autonomous Robotic Systems, pp. 251–258 (2009)Google Scholar
  9. 9.
    Murata, S., Kakomura, K., Kurokawa, H.: Toward a scalable modular robotic system. IEEE Robot. Autom. Mag. 14(4), 56–63 (2007). doi: 10.1109/M-RA.2007.908984 CrossRefGoogle Scholar
  10. 10.
    Nagpal, R.: Programmable self-assembly: constructing global shape using biologically-inspired local interactions and origami mathematics. Ph.D. Thesis, Massachusetts Institute of Technology (2001)Google Scholar
  11. 11.
    Rubenstein, M., Payne, K., Will, P., Shen, W.M.: Docking among independent and autonomous conro self-reconfigurable robots. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 3, pp. 2877–2882 (2004). doi: 10.1109/ROBOT.2004.1307497
  12. 12.
    Salemi, B., Moll, M., Shen, W.M.: SUPERBOT: a deployable, multi-functional, and modular self-reconfigurable robotic system. In: Proceedings of Intenational Conference on Intelligent Robots and Systems, pp. 3636–3641. Beijing, China (2006)Google Scholar
  13. 13.
    Støy, K.: Using cellular automata and gradients to control self-reconfiguration. Robot. Auton. Syst. 54, 135–141 (2006). doi: 10.1016/j.robot.2005.09.017 CrossRefGoogle Scholar
  14. 14.
    Vaughan, R.: Massively multi-robot simulation in stage. Swarm Intell. 2(2–4), 189–208 (2008). doi: 10.1007/s11721-008-0014-4 CrossRefGoogle Scholar
  15. 15.
    Werfel, J.: Biologically realistic primitives for engineered morphogenesis. In: the Seventh International Conference on Swarm Intelligence (ANTS2010), pp. 131–142. Springer, Belgium (2010). doi:10.1007/978-3-642-15461-4_12Google Scholar
  16. 16.
    Yim, M., White, P., Park, M., Sastra, J.: Modular self-reconfigurable robots. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 5618–5631. Springer, New York (2009). doi:10.1007/978-0-387-30440-3_334Google Scholar
  17. 17.
    Yim, M., Zhang, Y., Roufas, K., Duff, D., Eldershaw, C.: Connecting and disconnecting for chain self-reconfiguration with polybot. IEEE/ASME Trans. Mechatron. 7(4), 442–451 (2002). doi: 10.1109/TMECH.2002.806221 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Bristol Robotics Laboratory (BRL)University of the West of EnglandBristolUK

Personalised recommendations