Advertisement

SWARMORPH: Morphogenesis with Self-Assembling Robots

  • Rehan O’GradyEmail author
  • Anders Lyhne Christensen
  • Marco Dorigo
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

We detail progress towards giving robots the capacity to assemble into appropriate morphologies and to operate as a single entity when physically connected to one another. Our work is conducted on the Swarm-bot robotic platform. We develop low-level control logic to allow inter-robot connections to be formed at particular angles. We develop higher-level control logic to dictate the sequence of these connections so as to form desired morphologies. The high-level logic also allows the robots to make appropriate collective responses to different tasks. We test our morphology generation framework with a series of real-world experiments conducted on up to nine robots. We also do some experiments in a physics-based simulation environment to verify scalability.

Keywords

Morphology Growth Single Robot Extension Rule Symbolic Communication Support Morphology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The research leading to the results presented in this chapter has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement Nr. 246939. Rehan O’Grady and Marco Dorigo acknowledge support from the Belgian F.R.S.-FNRS, of which they are a postdoctoral researcher and a research director, respectively.

References

  1. 1.
    Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Malone, W., Napp, N., Nguyen, T.: Programmable parts: a demonstration of the grammatical approach to self-organization. In: Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2644–2651. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  2. 2.
    Bojinov, H., Casal, A., Hogg, T.: Emergent structures in modular self-reconfigurable robots. In: Proceedings of the 2000 IEEE International Conference on Robotics and Automation, pp. 1734–1741. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  3. 3.
    Breivik, J.: Self-organization of template-replicating polymers and the spontaneous rise of genetic information. Entropy 3, 273–279 (2001)CrossRefGoogle Scholar
  4. 4.
    Brown, H.B., Weghe, J.M.V., Bererton, C.A., Khasla, P.K.: Millibot trains for enhanced mobility. IEEE/ASME Trans. Mechatron. 7(4), 452–461 (2002)CrossRefGoogle Scholar
  5. 5.
    Brown, H.B., Weghe, M.V., Bererton, C., Khosla, P.: Millibot trains for enhanced mobility. IEEE/ASME Trans. Mechatron. 7(4), 452–461 (2002)CrossRefGoogle Scholar
  6. 6.
    Butler, Z., Kotay, K., Rus, D., Tomita, K.: Generic decentralized control for lattice-based self-reconfigurable robots. Int. J. Robot. Res. 23(9), 919–937 (2004)CrossRefGoogle Scholar
  7. 7.
    Castano, A., Behar, A., Will, P.M.: The Conro modules for reconfigurable robots. IEEE/ASME Trans. Mechatron. 7(4), 403–409 (2002)CrossRefGoogle Scholar
  8. 8.
    Castano, A., Shen, W.M., Will, P.: CONRO: towards deployable robots with inter-robots metamorphic capabilities. Auton. Robots 8(3), 309–324 (2000)CrossRefGoogle Scholar
  9. 9.
    Christensen, A.L.: Efficient neuro-evolution of hole-avoidance and phototaxis for a swarm-bot. Mémoire de DEA, technical report TR/IRIDIA/2005-14, Université Libre de Bruxelles, Bruxelles, Belgium (2005)Google Scholar
  10. 10.
    Christensen, A.L., O’Grady, R., Dorigo, M.: Morphology control in multirobot system. IEEE Robot. Autom. Mag. 14(4), 18–25 (2007)CrossRefGoogle Scholar
  11. 11.
    Christensen, A.L., O’Grady, R., Dorigo, M.: SWARMORPH-script: a language for arbitrary morphology generation in self-assembling robots. Swarm Intell. 2(2–4), 143–165 (2008)CrossRefGoogle Scholar
  12. 12.
    Christensen, A.L., O’Grady, R., Dorigo, M.: Parallel task execution, morphology control and scalability in a swarm of self-assembling robots. In: Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, Robótica 2009, pp. 127–133. IPCB-Instituto Polit écnico de Castelo Branco, Castelo Branco, Portugal (2009)Google Scholar
  13. 13.
    Damoto, R., Kawakami, A., Hirose, S.: Study of super-mechano colony: concept and basic experimental set-up. Adv. Robot. 15(4), 391–408 (2001)CrossRefGoogle Scholar
  14. 14.
    Dorigo, M.: The swarmanoid project. http://www.swarmanoid.org (2009)
  15. 15.
    Fukuda, T., Buss, M., Hosokai, H., Kawauchi, Y.: Cell structured robotic system CEBOT: control, planning and communication methods. Robot. Autonom. Syst. 7(2–3), 239–248 (1991)CrossRefGoogle Scholar
  16. 16.
    Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Autonomous self-assembly in swarm-bots. IEEE Trans. Robot. 22(6), 1115–1130 (2006)CrossRefGoogle Scholar
  17. 17.
    Groß, R., Dorigo, M.: Self-assembly at the macroscopic scale. Proc. IEEE 96(9), 1490–1508 (2008)CrossRefGoogle Scholar
  18. 18.
    Hirose, S., Shirasu, T., Fukushima, E.F.: Proposal for cooperative robot “Gunryu” composed of autonomous segments. Robots Auton. Syst. 17(1–2), 107–118 (1996)CrossRefGoogle Scholar
  19. 19.
    Hosokawa, K., Shimoyama, I., Miura, H.: Dynamics of self-assembling systems: analogy with chemical kinetics. Artif. Life 1(4), 413–427 (1994)CrossRefGoogle Scholar
  20. 20.
    Jones, C., Matarić, M.J.: From local to global behavior in intelligent self-assembly. In: Proceedings of the 2003 IEEE International Conference on Robotics and Automation, ICRA’03, vol. 1, pp. 721–726. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  21. 21.
    Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., Kokaji, S.: Automatic locomotion design and experiments for a modular robotic system. IEEE/ASME Trans. Mechatron. 10(3), 314–325 (2005)CrossRefGoogle Scholar
  22. 22.
    Kawauchi, Y., Inaba, M., Fukuda, T.: A principle of distributed decision making of celluar robotic system (CEBOT). In: Proceedings of the 1993 IEEE International Conference on Robotics and Automation, pp. 833–838. IEEE Press, Piscataway (1993)Google Scholar
  23. 23.
    Klavins, E., Ghrist, R., Lipsky, D.: A grammatical approach to self-organizing robotic systems. IEEE Trans. Autom. Control 51(6), 949–962 (2006)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mathews, N., Christensen, A.L., Ferrante, E., O’Grady, R., Dorigo, M.: Establishing spatially targeted communication in a heterogeneous robot swarm. In: Proceedings of 9th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010), pp. 939–946. International Foundation for Autonomous Agents and Multiagent Systems (2010)Google Scholar
  25. 25.
    Mondada, F., Pettinaro, G.C., Guignard, A., Kwee, I.V., Floreano, D., Deneubourg, J.L., Nolfi, S., Gambardella, L.M., Dorigo, M.: SWARM-BOT: a new distributed robotic concept. Auton. Robots 17(2–3), 193–221 (2004)CrossRefGoogle Scholar
  26. 26.
    Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., Kokaji, S.: M-TRAN: self-reconfigurable modular robotic system. IEEE/ASME Trans. Mechatron. 7(4), 431–441 (2002)CrossRefGoogle Scholar
  27. 27.
    Mytilinaios, E., Desnoyer, M., Marcus, D., Lipson, H.: Designed and evolved blueprints for physical self-replicating machines. In: Proceedings of the 9th International Conference on the Simulation and Synthesis of Living Systems (Artificial Life IX), pp. 15–20. MIT Press, Massachusetts (2004)Google Scholar
  28. 28.
    O’Grady, R., Christensen, A.L., Dorigo, M.: SWARMORPH: multi-robot morphogenesis using directional self-assembly. IEEE Trans. Robot. 25(3), 738–743 (2009)CrossRefGoogle Scholar
  29. 29.
    O’Grady, R., Christensen, A.L., Dorigo, M.: Swarmorph: morphogenesis with self-assembling robots—supplementary online material. http://iridia.ulb.ac.be/supp/IridiaSupp2010-002 (2010)
  30. 30.
    O’Grady, R., Pinciroli, C., Christensen, A.L., Dorigo, M.: Supervised group size regulation in a heterogeneous robotic swarm. In: 9th Conference on Autonomous Robot Systems and Competitions, Robótica 2009, pp. 113–119. IPCB-Instituto Polit écnico de Castelo Branco, Castelo Branco, Portugal (2009)Google Scholar
  31. 31.
    Payne, K., Salemi, B., Will, P., Shen, W.M.: Sensor-based distributed control for chain-typed self-reconfiguration. In: C-IROS-2004, vol. 2, pp. 2074–2080 (2004)Google Scholar
  32. 32.
    Penrose, L.S., Penrose, R.: A self-reproducing analogue. Nature 179(4571), 1183 (1957)CrossRefGoogle Scholar
  33. 33.
    Rus, D., Vona, M.: Self-reconfiguration planning with compressible unit modules. In: Proceedings of the 1999 IEEE International Conference on Robotics and Automation, ICRA’03, vol. 4, pp. 2513–2520. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  34. 34.
    Rus, D., Vona, M.: Crystalline robots: Self-reconfiguration with compressible unit modules. Auton. Robots 10(1), 107–124 (2001)zbMATHCrossRefGoogle Scholar
  35. 35.
    Salemi, B., Moll, M., Shen, W.M.: SUPERBOT: a deployable, multi-functional, and modular self-reconfigurable robotic system. In: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3636–3641. IEEE Press, Piscataway (2006)Google Scholar
  36. 36.
    Shen, W.M., Krivokon, M., Chiu, H., Everist, J., Rubenstein, M., Venkatesh, J.: Multimode locomotion for reconfigurable robots. Auton. Robots 20(2), 165–177 (2006)CrossRefGoogle Scholar
  37. 37.
    Shen, W.M., Will, P., Galstyan, A., Chuong, C.M.: Hormone-inspired self-organization and distributed control of robotic swarms. Auton. Robots 17(1), 93–105 (2004)CrossRefGoogle Scholar
  38. 38.
    Støy, K.: Using cellular automata and gradients to control self-reconfiguration. Robot. Auton. Syst. 54(2), 135–141 (2006)CrossRefGoogle Scholar
  39. 39.
    Støy, K., Nagpal, R.: Self-reconfiguration using directed growth. In: Proceedings of the International Conference on Distributed Autonomous Robot Systems (DARS-04), pp. 1–10. Springer, Berlin(2004)Google Scholar
  40. 40.
    White, P., Zykov, V., Bongard, J., Lipson, H.: Three dimensional stochastic reconfiguration of modular robots. In: Proceedings of Robotics Science and Systems, pp. 161–168. MIT Press, Cambridge (2005)Google Scholar
  41. 41.
    White, P.J., Kopanski, K., Lipson, H.: Stochastic self-reconfigurable cellular robotics. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, vol. 3, pp. 2888–2893. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  42. 42.
    Yim, M., Duff, D., Roufas, K.: Walk on the wild side. IEEE Robot. Autom. Mag. 9(4), 49–53 (2002)Google Scholar
  43. 43.
    Yim, M., Duff, D., Roufas, K.D.: Polybot: a modular reconfigurable robot. In: Proceedings of the 2000 IEEE International Conference on Robotics and Automation, vol. 1, pp. 514–520. IEEE Press, Piscataway (2000)Google Scholar
  44. 44.
    Yim, M., Roufas, K., Duff, D., Zhang, Y., Eldershaw, C., Homans, S.B.: Modular reconfigurable robots in space applications. Auton. Robots 14(2–3), 225–237 (2003)zbMATHCrossRefGoogle Scholar
  45. 45.
    Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.S.: Modular self-reconfigurable robot systems. IEEE Robot. Autom. Mag. 14(1), 43–52 (2007)CrossRefGoogle Scholar
  46. 46.
    Yim, M., Zhang, Y., Duff, D.: Modular robots. IEEE Spectr. Mag. 39(2), 30–34 (2002)CrossRefGoogle Scholar
  47. 47.
    Yim, M., Zhang, Y., Roufas, K., Duff, D., Eldershaw, C.: Connecting and disconnecting for chain self-reconfiguration with PolyBot. IEEE/ASME Trans. Mechatron. 7(4), 442–451 (2002)CrossRefGoogle Scholar
  48. 48.
    Yoshida, E., Murata, S., Kamimura, A., Tomita, K., Kurokawa, H.,, Kokaji, S.: A self-reconfigurable modular robot: reconfiguration planning and experiments. Int. J. Robot. Res. 21(10G11), 903–915 (2002)Google Scholar
  49. 49.
    Yu, C.H., Nagpal, R.: Sensing-based shape formation on modular multi-robot systems: a theoretical study. In: Proceedings of the 7th Internation Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008), pp. 71–78. ACM, New York (2008)Google Scholar
  50. 50.
    Yu, C.H., Willems, F.X., Ingber, D., Nagpal, R.: Self-organization of environmentally-adaptive shapes on a modular robot. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems 2007 (IROS 2007), pp. 2353–2360. IEEE Press, Piscataway (2007)Google Scholar
  51. 51.
    Zhang, Y., Roufas, K., Eldershaw, C., Yim, M., Duff, D.: Sensor computations in modular self reconfigurable robots. In: Proceedings of the 8th International Symposium on Experimental Robotics, vol. 5, pp. 276–286. Springer, Berlin (2003)Google Scholar
  52. 52.
    Zykov, V., Mytilinaios, E., Adams, B., Lipson, H.: Self-reproducing machines. Nature 435(7039), 163–164 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rehan O’Grady
    • 1
  • Anders Lyhne Christensen
    • 2
  • Marco Dorigo
    • 1
  1. 1.IRIDIA-CoDEUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Instituto de Telecomunicações, Instituto Universitário de Lisboa (ISCTE-IUL)LisboaPortugal

Personalised recommendations