Swarm-Based Computational Development

  • Sebastian von MammenEmail author
  • David Phillips
  • Timothy Davison
  • Heather Jamniczky
  • Benedikt Hallgrímsson
  • Christian Jacob
Part of the Understanding Complex Systems book series (UCS)


Swarms are a metaphor for complex dynamic systems. In swarms, large numbers of individuals locally interact and form non-linear, dynamic interaction networks. Ants, wasps and termites, for instance, are natural swarms whose individual and group behaviors have been evolving over millions of years. In their intricate nest constructions, the emergent effectiveness of their behaviors becomes apparent. Swarm-based computational simulations capture the corresponding principles of agent-based, decentralized, self-organizing models. In this work, we present ideas around swarm-based developmental systems, in particular swarm grammars, a swarm-based generative representation, and our efforts towards the unification of this methodology and the improvement of its accessibility.


Construction Element Formal Grammar Agent Parameter Interaction Topology Swarm System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Banzhaf, W.: Artificial chemistries—towards constructive dynamical systems. Solid State Phenom. 97, 43–50 (2004)CrossRefGoogle Scholar
  2. 2.
    Bentley, P.J., Kumar, S.: Three ways to grow designs: a comparison of embryogenies for an evolutionary design problem. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-1999) (1999)Google Scholar
  3. 3.
    Beurier, G., Michel, F., Ferber, J.: A morphogenesis model for multiagent embryogeny. In: Proceedings of the 10th International Conference on the Simulation and Synthesis of Living Systems (ALIFE X) (2006)Google Scholar
  4. 4.
    Blackwell, T.: Swarming and music. In: Miranda, E.R., Biles, J.A. (eds.) Evolutionary Computer Music, pp. 194–217. Springer, London (2007)CrossRefGoogle Scholar
  5. 5.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Santa Fe Institute Studies in the Sciences of Complexity. Oxford University Press, New York (1999)Google Scholar
  6. 6.
    Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton Studies in Complexity. Princeton University Press, Princeton (2003)Google Scholar
  7. 7.
    Chomsky, N.: Three models for the description of language. IRE Trans. Inf. Theory 2(3), 113–124 (1956)zbMATHCrossRefGoogle Scholar
  8. 8.
    Davison, T., von Mammen, S., Jacob, C.: Evoshelf: a system for managing and exploring evolutionary data. In: Proceedings of Parallel Problem Solving from Nature (PPSN) (2010)Google Scholar
  9. 9.
    De Garis, H.: Artificial embryology: the genetic programming of an artificial embryo. In: Soucek, B. (ed.) Dynamic, Genetic, and Chaotic Programming. Wiley, New York (1992)Google Scholar
  10. 10.
    Denzinger, J., Kordt, M.: Evolutionary on-line learning of cooperative behavior with situation-action-pairs. In: ICMAS, pp. 103–110. IEEE Computer Society (2000)Google Scholar
  11. 11.
    Denzinger, J., Winder, C.: Combining coaching and learning to create cooperative character behavior. In: CIG. IEEE (2005)Google Scholar
  12. 12.
    Deussen, O., Hanrahan, P., Lintermann, B., Mech, R., Pharr, M., Prusinkiewicz, P.: Realistic modeling and rendering of plant ecosystems. In: SIGGRAPH 98, Computer Graphics, Annual Conference Series, pp. 275–286. ACM SIGGRAPH (1998)Google Scholar
  13. 13.
    Doursat, R.: Organically grown architectures: creating decentralized, autonomous systems by embryomorphic engineering. In: Würtz, R.P. (ed.) Organic Computing. Springer, Berlin (2007)Google Scholar
  14. 14.
    Ebner, M.: Coevolution and the red queen effect shape virtual plants. Genet. Program Evolvable Mach. 7(1), 103–123 (2006)CrossRefGoogle Scholar
  15. 15.
    Farmer, G., Guy, S.: Visions of ventilation: pathways to sustainable architecture. Department of Architecture, University of Newcastle upon Tyne, Newcastle upon Tyne (2002)Google Scholar
  16. 16.
    Giavitto, J.L., Michel, O.: Modeling the topological organization of cellular processes. Biosystems 70(2), 149–163 (2003)CrossRefGoogle Scholar
  17. 17.
    Gowri, K.: Green building rating systems: an overview. ASHRAE J. 46(11), 56–60 (2004)Google Scholar
  18. 18.
    Hallgrímsson, B., Boughner, J.C., Turinsky, A., Parsons, T.E., Logan, C., Sensen, C.W.: Geometric morphometrics and the study of development. In: Sensen, C.W. (ed.) Advanced Imaging in Biology and Medicine, pp. 319–336. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Hölldobler, B., Wilson, E.O.: The Ants. Springer, Berlin (1990)Google Scholar
  20. 20.
    Hornby, G.S.: Measuring complexity by measuring structure and organization. In: Srinivasan, D., Wang, L. (eds.) 2007 IEEE Congress on Evolutionary Computation, pp. 2017–2024. IEEE Press, Singapore (2007)CrossRefGoogle Scholar
  21. 21.
    Hornby, G.S., Pollack, J.B.: Body-brain co-evolution using L-systems as a generative encoding. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), pp. 868–875. Morgan Kaufmann, San Francisco (2001)Google Scholar
  22. 22.
    Hornby, G.S., Pollack, J.B.: Evolving l-systems to generate virtual creatures. Comput. Graph. 25, 1041–1048 (2001)CrossRefGoogle Scholar
  23. 23.
    Hu, D., Marcucio, R.: A SHH-responsive signaling center in the forebrain regulates craniofacial morphogenesis via the facial ectoderm. Development 136(1), 107 (2009)CrossRefGoogle Scholar
  24. 24.
    Jacob, C.: Genetic l-system programming. In: PPSN III–Parallel Problem Solving from Nature, Lecture Notes in Computer Science, vol. 866, pp. 334–343. Springer, Jerusalem (1994)Google Scholar
  25. 25.
    Jacob, C.: Evolving evolution programs: Genetic programming and l-systems. In: Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R. (eds.) Genetic Programming 1996: First Annual Conference, pp. 107–115. MIT Press, Cambridge, Stanford University, Palo Alto (1996)Google Scholar
  26. 26.
    Jacob, C.: Evolution and co-evolution of developmental programs. Computer Physics Communications, Special Issue, Modeling Collective Phenomena in the Sciences (1999) 121–122, 46–50Google Scholar
  27. 27.
    Jacob, C.: Illustrating Evolutionary Computation with Mathematica. Morgan Kaufmann Publishers, San Francisco (2001)Google Scholar
  28. 28.
    Jacob, C., Barbasiewicz, A., Tsui, G.: Swarms and genes: Exploring \(\lambda \)-switch gene regulation through swarm intelligence. In: CEC 2006, IEEE Congress on Evolutionary Computation (2006)Google Scholar
  29. 29.
    Jacob, C., Burleigh, I.: Biomolecular swarms: an agent-based model of the lactose operon. Nat. Comput. 3(4), 361–376 (2004)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Jacob, C., Litorco, J., Lee, L.: Immunity through swarms: Agent-based simulations of the human immune system. In: Artificial Immune Systems, ICARIS 2004, Third International Conference. LNCS 3239, Springer, Catania (2004)Google Scholar
  31. 31.
    Jacob, C., Steil, S., Bergmann, K.: The swarming body: Simulating the decentralized defenses of immunity. In: Artificial Immune Systems, ICARIS 2006, 5th International Conference. Springer, Oeiras (2006)Google Scholar
  32. 32.
    Jacob, C., von Mammen, S.: Swarm grammars: growing dynamic structures in 3d agent spaces. Digital Creativity: Special issue on Computational Models of Creativity in the Arts 18(1), 54–64 (2007)Google Scholar
  33. 33.
    Jones, D.: Atomswarm: a framework for swarm improvisation. In: Giacobini, M., et al. (eds.) Applications of Evolutionary Computing, pp. 423–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  34. 34.
    Kauffman, S.: The Origins of Order. Oxford University Press, New York (1993)Google Scholar
  35. 35.
    Kókai, G., Tóth, Z., Ványi, R.: Modelling blood vessel of the eye with parametric l-systems using evolutionary algorithms. In: Horn, W., Shahar, Y., Lindberg, G., Andreassen, S., Wyatt, J.C. (eds.) Artificial Intelligence in Medicine, Proceedings of the Joint European Conference on Artificial Intelligence in Medicine and, Medical Decision Making, AIMDM’99, 1620, pp. 433–443 (1999)Google Scholar
  36. 36.
    Kókai, G., Ványi, R., Tóth, Z.: Parametric l-system description of the retina with combined evolutionary operators. In: Genetic and Evolutionary Computation Conference, GECCO-99. Orlando, Florida, USA (1999)Google Scholar
  37. 37.
    Kumar, S., Bentley, P. (eds.): On Growth. Form and Computers. Elsevier Academic Press, London (2003)Google Scholar
  38. 38.
    Kumar, S., Bentley, P.: Biologically inspired evolutionary development. Evolvable Systems: From Biology to Hardware, pp. 99–106. Springer, Heidelberg (2003)Google Scholar
  39. 39.
    Kwong, H., Jacob, C.: Evolutionary exploration of dynamic swarm behaviour. In: Congress on Evolutionary Computation. IEEE Press, Canberra (2003)Google Scholar
  40. 40.
    Lindenmayer, A.: Developmental systems without cellular interactions, their languages and grammars. J. Theor. Biol. 30(3), 455–484 (1971)CrossRefGoogle Scholar
  41. 41.
    McKean, E. (ed.): The New Oxford American Dictionary. Oxford University Press, Oxford (2005)Google Scholar
  42. 42.
    Mech, R., Prusinkiewicz, P.: Visual models of plants interacting with their environment. In: SIGGRAPH’96, pp. 397–410. ACM SIGGRAPH, New York (1996)Google Scholar
  43. 43.
    Michalewicz, M.T. (ed.): Plants to Ecosystems: Advances in Computational Life Sciences. CSIRO Publishing, Collingwood (1997)Google Scholar
  44. 44.
    Michel, F., Beurier, G., Ferber, J.: The turtlekit simulation platform: application to complex systems. In: Proceedings of Workshop Sessions at the 1st International Conference on Signal & Image Technology and Internet-Based Systems (IEEE SITIS05), pp. 122–128. IEEE Press, Canberra (2005)Google Scholar
  45. 45.
    Mock, K.J.: Wildwood: the evolution of l-system plants for virtual environments. In: IEEE Conference on Evolutionary Computation, pp. 476–480. IEEE Press, New York (1998)Google Scholar
  46. 46.
    Polack, F.A.C., Andrews, P.S., Ghetiu, T., Read, M., Stepney, S., Timmis, J., Sampson, A.T.: Reflections on the simulation of complex systems for science. In: ICECCS 2010: Fifteenth IEEE International Conference on Engineering of Complex Computer Systems, pp. 276–285. IEEE Press, Canberra (2010)Google Scholar
  47. 47.
    Prusinkiewicz, P., Hammel, M., Hanan, J., Mech, R.: Visual models of plant development. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages. Springer, New York (1997)Google Scholar
  48. 48.
    Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer, Heidelberg (1996)Google Scholar
  49. 49.
    Reynolds, C.W.: Flocks, herds, and schools: a distributed behavioral model. Comput. Graph. 21(4), 25–34 (1987)CrossRefGoogle Scholar
  50. 50.
    Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education, Upper Saddle River (2010)Google Scholar
  51. 51.
    Salazar-Ciudad, I.: Tooth Morphogenesis in vivo, in vitro, and in silico. Curr. Top. Dev. Biol. 81, 342 (2008)Google Scholar
  52. 52.
    Schuster, P.: How does complexity arise in evolution. Complex 2(1), 22–30 (1996)CrossRefGoogle Scholar
  53. 53.
    Settles, M., Nathan, P., Soule, T.: Breeding swarms: a new approach to recurrent neural network training. In: GECCO ’05: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, pp. 185–192. ACM Press, New York (2005)Google Scholar
  54. 54.
    Settles, M., Soule, T.: Breeding swarms: a ga/pso hybrid. In: GECCO ’05: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, pp. 161–168. ACM Press, New York (2005)Google Scholar
  55. 55.
    Shirazi, A.S., von Mammen, S., Jacob, C.: Adaptive modularization of the mapk signaling pathway using the multiagent paradigm. In: Proceedings of Parallel Problem Solving from Nature (PPSN) (2010)Google Scholar
  56. 56.
    Smith, C.: On vertex-vertex systems and their use in geometric and biological modelling. Ph.D. thesis, University of Calgary (2006)Google Scholar
  57. 57.
    Spector, L., Klein, J., Perry, C., Feinstein, M.: Emergence of collective behavior in evolving populations of flying agents. In: Genetic and Evolutionary Computation Conference (GECCO-2003), pp. 61–73. Springer, Chicago (2003)Google Scholar
  58. 58.
    Van der Ryn, S., Cowan, S.: Ecological Design. Island Press, Washington (2007)Google Scholar
  59. 59.
    von Mammen, S., Jacob, C., Kókai, G.: Evolving swarms that build 3d structures. In: CEC 2005, IEEE Congress on Evolutionary Computation, pp. 1434–1441. IEEE Press, Edinburgh (2005)Google Scholar
  60. 60.
    von Mammen, S., Jacob, C.: Evolutionary swarm design of architectural idea models. In: Genetic and Evolutionary Computation Conference (GECCO) 2008, pp. 143–150. ACM Press, New York (2008)Google Scholar
  61. 61.
    von Mammen, S., Jacob, C.: Swarm-driven idea models—from insect nests to modern architecture. In: Brebbia, C. (ed.) Eco-Architecture 2008, Second International Conference on Harmonisation Between Architecture and Nature, pp. 117–126. WIT Press, Winchester (2008)Google Scholar
  62. 62.
    von Mammen, S., Jacob, C.: Genetic swarm grammar programming: Ecological breeding like a gardener. In: Srinivasan, D., Wang, L. (eds.) 2007 IEEE Congress on Evolutionary Computation, pp. 851–858. IEEE Press, Canberra (2007)Google Scholar
  63. 63.
    von Mammen, S., Jacob, C.: The spatiality of swarms—quantitative analysis of dynamic interaction networks. In: Proceedings of Artificial Life XI, pp. 662–669. MIT Press, Massachusetts (2008)Google Scholar
  64. 64.
    von Mammen, S., Phillips, D., Davison, T., Jacob, C.: A graph-based developmental swarm representation & algorithm. In: ANTS 2010: Seventh International Conference on Swarm Intelligence. Springer, Heidelberg (2010)Google Scholar
  65. 65.
    von Mammen, S., Wissmeier, T., Wong, J., Jacob, C.: Artistic exploration of the worlds of digital developmental swarms. LEONARDO (2010)Google Scholar
  66. 66.
    von Mammen, S., Wong, J., Jacob, C.: Virtual constructive swarms: compositions and inspirations. In: Applications of Evolutionary Computing, Proceedings of EvoWorkshops 2008, Lecture Notes in Computer Science, vol. 4974, pp. 491–496. Springer, Berlin (2008)Google Scholar
  67. 67.
    von Neumann, J., Burks, A.W.: Theory of self-reproducing automata. University of Illinois Press, Urbana and London (1966)Google Scholar
  68. 68.
    Walker, D.C., Southgate, J.: The virtual cell-a candidate co-ordinator for ’middle-out’ modelling of biological systems. Briefings in Bioinformatics 10(4), 450–461 (2009)CrossRefGoogle Scholar
  69. 69.
    Wolfram, S.: Cellular automata as models of complexity. Nature 311, 419–424 (1984)CrossRefGoogle Scholar
  70. 70.
    Yu, J.: Evolutionary design of 2d fractals and 3d plant structures for computer graphics. Master’s thesis, Department of Computer Science, University of Calgary (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sebastian von Mammen
    • 1
    Email author
  • David Phillips
    • 2
  • Timothy Davison
    • 2
  • Heather Jamniczky
    • 2
  • Benedikt Hallgrímsson
    • 2
  • Christian Jacob
    • 3
  1. 1.Departments of Computer ScienceUniversity of CalgaryCalgaryCanada
  2. 2.Departments of Cell BiologyUniversity of CalgaryCalgaryCanada
  3. 3.Departments of Computer Science and Biochemistry and Molecular BiologyUniversity of CalgaryCalgaryCanada

Personalised recommendations