Advertisement

Technical Demonstration on Model Based Training, Detection and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered Scenes

  • Stefan Hinterstoisser
  • Vincent Lepetit
  • Slobodan Ilic
  • Stefan Holzer
  • Kurt Konolige
  • Gary Bradski
  • Nassir Navab
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7585)

Abstract

In this technical demonstration, we will show our framework of automatic modeling, detection, and tracking of arbitrary texture-less 3D objects with a Kinect. The detection is mainly based on the recent template-based LINEMOD approach [1] while the automatic template learning from reconstructed 3D models, the fast pose estimation and the quick and robust false positive removal is a novel addition.

In this demonstration, we will show each step of our pipeline, starting with the fast reconstruction of arbitrary 3D objects, followed by the automatic learning and the robust detection and pose estimation of the reconstructed objects in real-time. As we will show, this makes our framework suitable for object manipulation e.g. in robotics applications.

References

  1. 1.
    Hinterstoisser, S., Holzer, S., Cagniart, C., Ilic, S., Konolige, K., Navab, N., Lepetit, V.: Multimodal Templates for Real-Time Detection of Texture-Less Objects in Heavily Cluttered Scenes. In: ICCV (2011)Google Scholar
  2. 2.
    Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.: KinectFusion: Real-Time Dense Surface Mapping and Tracking. In: ISMAR (2011)Google Scholar
  3. 3.
    Anonymous, Authors: Anonymous Title. Submitted to ACCV (2012)Google Scholar
  4. 4.
    Pan, Q., Reitmayr, G., Drummond, T.: ProFORMA: Probabilistic Feature-based On-line Rapid Model Acquisition. In: BMVC (2009)Google Scholar
  5. 5.
    Weise, T., Wismer, T., Leibe, B., Van Gool, L.: In-hand Scanning with Online Loop Closure. In: International Workshop on 3-D Digital Imaging and Modeling (2009)Google Scholar
  6. 6.
    Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: Dense Tracking and Mapping in Real-Time. In: ICCV (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stefan Hinterstoisser
    • 1
  • Vincent Lepetit
    • 2
  • Slobodan Ilic
    • 1
  • Stefan Holzer
    • 1
  • Kurt Konolige
    • 3
  • Gary Bradski
    • 3
  • Nassir Navab
    • 1
  1. 1.Department of Computer Science, CAMPTechnische Universität München (TUM)Germany
  2. 2.Computer Vision LaboratoryEcole Polytechnique Federale de Lausanne (EPFL)Switzerland
  3. 3.Industrial Perception Inc.USA

Personalised recommendations