Advertisement

Robust and Computationally Efficient Face Detection Using Gaussian Derivative Features of Higher Orders

  • John A. Ruiz-Hernandez
  • James L. Crowley
  • Claudine Combe
  • Augustin Lux
  • Matti Pietikäinen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7585)

Abstract

In this paper, we show that a cascade of classifiers using Gaussian derivatives features up to fourth order can be used efficiently to improve the detection performance and robustness as well when compared with the popular approaches using Haar-like features or using Gaussian derivatives of lower order. We also present a new training method that structures the cascade detection so as to use the least expensive derivatives in the initial stages, so as to reduce the overall computational cost of detection. We demonstrate these improvements with experiments using two publicly available datasets (MIT+CMU and FDDB), in the face detection problem, in addition we perform several experiment to show the robustness of Gaussian derivatives when several transformations are presented in the image.

Keywords

Higher-Order Gaussian Derivatives Cascade of Classifiers Face Detection Half-Octave Gaussian Pyramid 

References

  1. 1.
    Crowley, J.L., Riff, O.: Fast Computation of Scale Normalised Gaussian Receptive Fields. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 584–598. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Ruiz-Hernandez, J.A., Lux, A., Crowley, J.: Face detection by cascade of gaussian derivates classifiers calculated with a half-octave pyramid. In: IEEE Face and Gesture Recognition, pp. 1–6 (2008)Google Scholar
  3. 3.
    Yang, M.H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: A survey. IEEE TPAMI 24, 34–58 (2002)CrossRefGoogle Scholar
  4. 4.
    Zhang, C., Zhang, Z.: A survey of recent advances in face detection. Technical Report MSR-TR-2010-66, Microsoft Research (2010)Google Scholar
  5. 5.
    Meynet, J., Popovici, V., Thiran, J.P.: Face detection with boosted gaussian features. Pattern Recognition 40, 2283–2291 (2007)zbMATHCrossRefGoogle Scholar
  6. 6.
    Xiaohua, L., Lam, K.M., Lansun, S., Jiliu, Z.: Face detection using simplified gabor features and hierarchical regions in a cascade of classifiers. Pattern Recognition 30, 717–728 (2009)CrossRefGoogle Scholar
  7. 7.
    Roy, A., Marcel, S.: Haar local binary pattern feature for fast illumination invariant face detection. In: BMVC (2009)Google Scholar
  8. 8.
    Yan, S., Shan, S., Chen, X., Gao, W.: Locally assembled binary (lab) feature with feature-centric cascade for fast and accurate face detection. In: IEEE CVPR, pp. 1–7 (2008)Google Scholar
  9. 9.
    Brubaker, S.C., Wu, J., Sun, J., Mullin, M.D., Rehg, J.M.: On the design of cascades of boosted ensembles for face detection. IJCV 77, 65–86 (2008)CrossRefGoogle Scholar
  10. 10.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Wu, J., Brubaker, S., Mullin, M., Rehg, J.: Fast asymmetric learning for cascade face detection. IEEE TPAMI 30, 369–382 (2008)CrossRefGoogle Scholar
  12. 12.
    Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst (2007)Google Scholar
  13. 13.
    Jain, V., Learned-Miller, E.: Fddb: A benchmark for face detection in unconstrained settings. Technical Report UM-CS-2010-009, University of Massachusetts, Amherst (2010)Google Scholar
  14. 14.
    Rowley, H., Baluja, S., Kanade, T.: Rotation invariant neural network-based face detection. In: IEEE CVPR (1998)Google Scholar
  15. 15.
    Garcia, C., Delakis, M.: Convolutional face finder: A neural architecture for fast and robust face detection. IEEE TPAMI 26, 1408–1423 (2004)CrossRefGoogle Scholar
  16. 16.
    Li, S.Z., Zhang, Z.: Floatboost learning and statistical face detection. IEEE TPAMI 26, 1112–1123 (2004)CrossRefGoogle Scholar
  17. 17.
    Luo, H.: Optimization design of cascaded classifiers. In: IEEE CVPR, pp. 480–485 (2005)Google Scholar
  18. 18.
    Viola, P., Jones, M.J.: Robust real-time face detection. IJCV 57, 137–154 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • John A. Ruiz-Hernandez
    • 1
  • James L. Crowley
    • 2
  • Claudine Combe
    • 2
  • Augustin Lux
    • 2
  • Matti Pietikäinen
    • 1
  1. 1.Center for Machine Vision ResearchUniversity of OuluFinland
  2. 2.INRIA Grenoble-Rhône-Alpes Research CenterFrance

Personalised recommendations