Advertisement

2.1 Depth Estimation of Frames in Image Sequences Using Motion Occlusions

  • Guillem Palou
  • Philippe Salembier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7585)

Abstract

This paper proposes a system to depth order regions of a frame belonging to a monocular image sequence. For a given frame, regions are ordered according to their relative depth using the previous and following frames. The algorithm estimates occluded and disoccluded pixels belonging to the central frame. Afterwards, a Binary Partition Tree (BPT) is constructed to obtain a hierarchical, region based representation of the image. The final depth partition is obtained by means of energy minimization on the BPT. To achieve a global depth ordering from local occlusion cues, a depth order graph is constructed and used to eliminate contradictory local cues. Results of the system are evaluated and compared with state of the art figure/ground labeling systems on several datasets, showing promising results.

Keywords

Relative Depth Depth Estimation Motion Parallax Depth Order Occlude Pixel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ono, M.E., Rivest, J., Ono, H.: Depth perception as a function of motion parallax and absolute-distance information. Journal of Experimental Psychology: Human Perception and Performance 12, 331–337 (1986)CrossRefGoogle Scholar
  2. 2.
    Qian, N., Qian, D.N.: Binocular disparity and the perception of depth. Neuron 18, 359–368 (1997)CrossRefGoogle Scholar
  3. 3.
    He, X., Yuille, A.: Occlusion Boundary Detection Using Pseudo-depth. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 539–552. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Turetken, E., Alatan, A.A.: Temporally consistent layer depth ordering via pixel voting for pseudo 3D representation. In: Proc. 3DTV Conf.: The True Vision - Capture, Transmission and Display of 3D Video, pp. 1–4 (2009)Google Scholar
  5. 5.
    Chang, J.Y., Cheng, C.C., Chien, S.Y., Chen, L.G.: Relative depth layer extraction for monoscopic video by use of multidimensional filter. In: Proc. IEEE Int. Multimedia and Expo. Conf., 221–224 (2006)Google Scholar
  6. 6.
    Li, P., Farin, D., Gunnewiek, R.K., de With, P.H.N.: On creating depth maps from monoscopic video using structure from motion. In: 27th Symposium on Information Theory in the Benelux, pp. 508–515 (2006)Google Scholar
  7. 7.
    Zhang, G., Jia, J., Wong, T.T., Bao, H.: Consistent depth maps recovery from a video sequence. IEEE Trans. Pattern Anal. Mach. Intell. 31, 974–988 (2009)CrossRefGoogle Scholar
  8. 8.
    Sundberg, P., Brox, T., Maire, M., Arbelaez, P., Malik, J.: Occlusion boundary detection and figure/ground assignment from optical flow. In: IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO (2011)Google Scholar
  9. 9.
    Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval. IEEE Trans. on Image Processing 9, 561–576 (2000)CrossRefGoogle Scholar
  10. 10.
    Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High Accuracy Optical Flow Estimation Based on a Theory for Warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004, Part IV. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Palou, G., Salembier, P.: From local occlusion cues to global depth estimation. In: IEEE Int. Conf. on Acoustics Speech and Signal Processing, Kyoto, Japan (2012)Google Scholar
  12. 12.
    Sun, D., Sudderth, E., Black, M.J.: Layered Image Motion with Explicit Occlusions, Temporal Consistency, and Depth Ordering. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 23. Curran Associates, Inc. (2010)Google Scholar
  13. 13.
    Alvarez, L., Deriche, R., Papadopoulo, T., Sánchez, J.: Symmetrical dense optical flow estimation with occlusions detection. Int. Journal of Computer Vision 75, 371–385 (2007), doi:10.1007/s11263-007-0041-4CrossRefGoogle Scholar
  14. 14.
    Calderero, F., Marques, F.: Region merging techniques using information theory statistical measures. IEEE Trans. on Image Processing 19, 1567–1586 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Vilaplana, V., Marques, F., Salembier, P.: Binary partition trees for object detection. IEEE Trans. on Image Processing 17, 2201–2216 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kanatani, K.: Transformation of optical flow by camera rotation. IEEE Trans. on Pattern Analysis and Machine Intelligence 10, 131–143 (1988)CrossRefGoogle Scholar
  17. 17.
    Andersen, R.: Modern methods for robust regression. Quantitative applications in the social sciences, vol. 152. Sage Publications (2008)Google Scholar
  18. 18.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd revised edn. The MIT Press (2001)Google Scholar
  19. 19.
    Stein, A.: Occlusion Boundaries: Low-Level Detection to High-Level Reasoning. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Guillem Palou
    • 1
  • Philippe Salembier
    • 1
  1. 1.Dept. of Signal Theory and CommunicationsTechnical University of Catalonia (UPC)BarcelonaSpain

Personalised recommendations