Advertisement

SuperFloxels: A Mid-level Representation for Video Sequences

  • Avinash Ravichandran
  • Chaohui Wang
  • Michalis Raptis
  • Stefano Soatto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7585)

Abstract

We describe an approach for grouping trajectories extracted from a video that preserves motion discontinuities due, for instance, to occlusions, but not color or intensity boundaries. Our method takes as input trajectories with variable length and onset time, and outputs a membership function as well as an indicator function denoting the exemplar trajectory of each group. This can be used for several applications such as compression, segmentation, and background removal.

Keywords

Video Sequence Cluster Center Motion Boundary Object Segmentation Motion Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. PAMI 22(8) (2000)Google Scholar
  2. 2.
    Kumar, M.P., Torr, P.H.S., Zisserman, A.: Learning layered motion segmentation of video. In: ICCV (2005)Google Scholar
  3. 3.
    Cremers, D., Soatto, S.: Motion competition: a variational approach to piecewise parametric motion segmentation. IJCV 62(3), 249–265 (2005)CrossRefGoogle Scholar
  4. 4.
    Yan, J., Pollefeys, M.: A General Framework for Motion Segmentation: Independent, Articulated, Rigid, Non-rigid, Degenerate and Non-degenerate. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part IV. LNCS, vol. 3954, pp. 94–106. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Vidal, R., Hartley, R.: Motion segmentation with missing data using powerfactorization and GPCA. In: CVPR (2004)Google Scholar
  6. 6.
    Rao, S., Tron, R., Vidal, R., Ma, Y.: Motion segmentation via robust subspace separation in the presence of outlying, incomplete, or corrupted trajectories. In: CVPR (2008)Google Scholar
  7. 7.
    Fradet, M., Robert, P., Perez, P.: Clustering point trajectories with various life-spans. In: CVMP (2009)Google Scholar
  8. 8.
    Brox, T., Malik, J.: Object Segmentation by Long Term Analysis of Point Trajectories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 282–295. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Fragkiadaki, K., Shi, J.: Detection free tracking: Exploiting motion and topology for segmenting and tracking under entanglement. In: CVPR (2011)Google Scholar
  10. 10.
    Lezama, J., Alahari, K., Sivic, J., Laptev, I.: Track to the future: Spatio-temporal video segmentation with long-range motion cues. In: CVPR (2011)Google Scholar
  11. 11.
    Wang, X., Tieu, K., Grimson, E.: Learning Semantic Scene Models by Trajectory Analysis. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part III. LNCS, vol. 3953, pp. 110–123. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Piciarelli, C., Micheloni, C., Foresti, G.L.: Trajectory-based anomalous event detection. IEEE TCSVT 18(11) (2008)Google Scholar
  13. 13.
    Brostow, G.J., Cipolla, R.: Unsupervised bayesian detection of independent motion in crowds. In: CVPR (2006)Google Scholar
  14. 14.
    Komodakis, N., Paragios, N., Tziritas, G.: Clustering via LP-based stabilities. In: NIPS (2009)Google Scholar
  15. 15.
    Charikar, M., Guha, S., Tardos, É., Shmoys, D.: A constant-factor approximation algorithm for the k-median problem. JCSS 65(1) (2002)Google Scholar
  16. 16.
    Wu, S., Oreifej, O., Shah, M.: Action recognition in videos acquired by a moving camera using motion decomposition of lagrangian particle trajectories. In: ICCV (2011)Google Scholar
  17. 17.
    Sheikh, Y., Javed, O., Kanade, T.: Background subtraction for freely moving cameras. In: ICCV (2009)Google Scholar
  18. 18.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM (6) (1981)Google Scholar
  19. 19.
    Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Systems Journal 4(1) (1965)Google Scholar
  20. 20.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Distance transforms of sampled functions. Technical report, Cornell Computing and Information Science (2004)Google Scholar
  21. 21.
    Brox, T., Malik, J.: Large displacement optical flow: Descriptor matching in variational motion estimation. PAMI 33(3) (2011)Google Scholar
  22. 22.
    Sundaram, N., Brox, T., Keutzer, K.: Dense Point Trajectories by GPU-Accelerated Large Displacement Optical Flow. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 438–451. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Ayvaci, A., Raptis, M., Soatto, S.: Sparse occlusion detection with optical flow. IJCV (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Avinash Ravichandran
    • 1
  • Chaohui Wang
    • 1
  • Michalis Raptis
    • 2
  • Stefano Soatto
    • 1
  1. 1.Vision LabUCLAUSA
  2. 2.Disney ResearchPittsburghUSA

Personalised recommendations