Universal OWL Axiom Enrichment for Large Knowledge Bases

  • Lorenz Bühmann
  • Jens Lehmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7603)

Abstract

The Semantic Web has seen a rise in the availability and usage of knowledge bases over the past years, in particular in the Linked Open Data initiative. Despite this growth, there is still a lack of knowledge bases that consist of high quality schema information and instance data adhering to this schema. Several knowledge bases only consist of schema information, while others are, to a large extent, a mere collection of facts without a clear structure. The combination of rich schema and instance data would allow powerful reasoning, consistency checking, and improved querying possibilities as well as provide more generic ways to interact with the underlying data. In this article, we present a light-weight method to enrich knowledge bases accessible via SPARQL endpoints with almost all types of OWL 2 axioms. This allows to semi-automatically create schemata, which we evaluate and discuss using DBpedia.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agresti, A., Coull, B.A.: Approximate is better than “exact” for interval estimation of binomial proportions. The American Statistician 52(2), 119–126 (1998)MathSciNetGoogle Scholar
  2. 2.
    Baader, F., Ganter, B., Sattler, U., Sertkaya, B.: Completing description logic knowledge bases using formal concept analysis. In: IJCAI 2007. AAAI Press (2007)Google Scholar
  3. 3.
    Baader, F., Sertkaya, B., Turhan, A.-Y.: Computing the least common subsumer w.r.t. a background terminology. J. Applied Logic 5(3), 392–420 (2007)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Badea, L., Nienhuys-Cheng, S.-H.: A Refinement Operator for Description Logics. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 40–59. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Choi, N., Song, I.-Y., Han, H.: A survey on ontology mapping. SIGMOD Record 35(3), 34–41 (2006)CrossRefGoogle Scholar
  6. 6.
    Cohen, W.W., Borgida, A., Hirsh, H.: Computing least common subsumers in description logics. In: AAAI 1992, pp. 754–760 (1992)Google Scholar
  7. 7.
    Cohen, W.W., Hirsh, H.: Learning the CLASSIC description logic: Theoretical and experimental results. In: KR 1994, pp. 121–133. Morgan Kaufmann (1994)Google Scholar
  8. 8.
    Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge-Intensive Induction of Terminologies from Metadata. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 441–455. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL Concept Learning in Description Logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Fleischhacker, D., Völker, J.: Inductive Learning of Disjointness Axioms. In: Meersman, R., Dillon, T., Herrero, P., Kumar, A., Reichert, M., Qing, L., Ooi, B.-C., Damiani, E., Schmidt, D.C., White, J., Hauswirth, M., Hitzler, P., Mohania, M. (eds.) OTM 2011, Part II. LNCS, vol. 7045, pp. 680–697. Springer, Heidelberg (2011), http://dx.doi.org/10.1007/978-3-642-25106-1 CrossRefGoogle Scholar
  11. 11.
    Hellmann, S., Lehmann, J., Auer, S.: Learning of OWL class descriptions on very large knowledge bases. Int. J. Semantic Web Inf. Syst. 5(2), 25–48 (2009)CrossRefGoogle Scholar
  12. 12.
    Iannone, L., Palmisano, I.: An Algorithm Based on Counterfactuals for Concept Learning in the Semantic Web. In: Ali, M., Esposito, F. (eds.) IEA/AIE 2005. LNCS (LNAI), vol. 3533, pp. 370–379. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for concept learning in the semantic web. Applied Intelligence 26(2), 139–159 (2007)CrossRefGoogle Scholar
  14. 14.
    Lehmann, J.: Hybrid Learning of Ontology Classes. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 883–898. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Lehmann, J.: DL-Learner: learning concepts in description logics. Journal of Machine Learning Research (JMLR) 10, 2639–2642 (2009)MathSciNetMATHGoogle Scholar
  16. 16.
    Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for ontology engineering. Journal of Web Semantics 9, 71–81 (2011)CrossRefGoogle Scholar
  17. 17.
    Lehmann, J., Bizer, C., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: DBpedia - a crystallization point for the web of data. Journal of Web Semantics 7(3), 154–165 (2009)CrossRefGoogle Scholar
  18. 18.
    Lehmann, J., Bühmann, L.: ORE - A Tool for Repairing and Enriching Knowledge Bases. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 177–193. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Lehmann, J., Haase, C.: Ideal Downward Refinement in the \(\mathcal{EL}\) Description Logic. In: De Raedt, L. (ed.) ILP 2009. LNCS, vol. 5989, pp. 73–87. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Lehmann, J., Hitzler, P.: Foundations of Refinement Operators for Description Logics (Best Student Paper Award). In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 161–174. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Lehmann, J., Hitzler, P.: A Refinement Operator Based Learning Algorithm for the ALC Description Logic (Best Student Paper Award). In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 147–160. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement operators. Machine Learning Journal 78(1-2), 203–250 (2010)CrossRefGoogle Scholar
  23. 23.
    Lisi, F.A.: Building rules on top of ontologies for the semantic web with inductive logic programming. Theory and Practice of Logic Programming 8(3), 271–300 (2008)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Lisi, F.A., Esposito, F.: Learning SHIQ+log rules for ontology evolution. In: SWAP 2008. CEUR Workshop Proceedings, vol. 426. CEUR-WS.org (2008)Google Scholar
  25. 25.
    Morsey, M., Lehmann, J., Auer, S., Stadler, C., Hellmann, S.: Dbpedia and the live extraction of structured data from wikipedia. Program: Electronic Library and Information Systems 46, 27 (2012)CrossRefGoogle Scholar
  26. 26.
    Nienhuys-Cheng, S.-H., de Wolf, R. (eds.): Foundations of Inductive Logic Programming. LNCS, vol. 1228. Springer, Heidelberg (1997)Google Scholar
  27. 27.
    Palma, R., Haase, P., Corcho, Ó., Gómez-Pérez, A.: Change representation for OWL 2 ontologies. In: Hoekstra, R., Patel-Schneider, P.F. (eds.) OWLED. CEUR Workshop Proceedings, vol. 529. CEUR-WS.org (2009)Google Scholar
  28. 28.
    Rudolph, S.: Exploring Relational Structures Via FLE. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 196–212. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  29. 29.
    Sertkaya, B.: Ontocom P system description. In: Grau, B.C., Horrocks, I., Motik, B., Sattler, U. (eds.) Proceedings of the 22nd International Workshop on Description Logics (DL 2009), Oxford, UK. CEUR Workshop Proceedings, vol. 477, CEUR-WS.org (2009)Google Scholar
  30. 30.
    Shvaiko, P., Euzenat, J.: Ten challenges for ontology matching. Technical report (August 01, 2008)Google Scholar
  31. 31.
    Völker, J., Niepert, M.: Statistical Schema Induction. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  32. 32.
    Völker, J., Rudolph, S.: Fostering web intelligence by semi-automatic OWL ontology refinement. In: Web Intelligence, pp. 454–460. IEEE (2008)Google Scholar
  33. 33.
    Völker, J., Vrandečić, D., Sure, Y., Hotho, A.: Learning Disjointness. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 175–189. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  34. 34.
    Wu, H., Zubair, M., Maly, K.: Harvesting social knowledge from folksonomies. In: Proceedings of the Seventeenth Conference on Hypertext and Hypermedia, HYPERTEXT 2006, pp. 111–114. ACM, New York (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lorenz Bühmann
    • 1
  • Jens Lehmann
    • 1
  1. 1.Institut für Informatik, AKSWUniversität LeipzigLeipzigGermany

Personalised recommendations