Allowing End Users to Query Graph-Based Knowledge Bases

  • Camille Pradel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7603)


Our purpose is to provide end users a means to query knowledge bases using natural language queries and thus hide the complexity of formulating a query expressed in a graph query language such as SPARQL. The main originality of our approach lies in the use of query patterns. Our contribution is materialized in a system named SWIP, standing for Semantic Web Interface Using Patterns, which is situated in the Semantic Web framework. This paper presents the main issues addressed by our work and establishes the list of the important steps (to be) carried out in order to make SWIP a fully functional system.


User Query SPARQL Query Query Pattern Query Object Formal Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Athanasis, N., Christophides, V., Kotzinos, D.: Generating On the Fly Queries for the Semantic Web: The ICS-FORTH Graphical RQL Interface (GRQL). In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 486–501. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Clemmer, A., Davies, S.: Smeagol: A “Specific-to-General” Semantic Web Query Interface Paradigm for Novices. In: Hameurlain, A., Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.) DEXA 2011, Part I. LNCS, vol. 6860, pp. 288–302. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    CoGui: A conceptual graph editor. Web site (2009),
  4. 4.
    Comparot, C., Haemmerlé, O., Hernandez, N.: An Easy Way of Expressing Conceptual Graph Queries from Keywords and Query Patterns. In: Croitoru, M., Ferré, S., Lukose, D. (eds.) ICCS 2010. LNCS, vol. 6208, pp. 84–96. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Elbassuoni, S., Ramanath, M., Schenkel, R., Weikum, G.: Searching rdf graphs with sparql and keywords. IEEE Data Eng. Bull. 33(1), 16–24 (2010)Google Scholar
  6. 6.
    Gaizauskas, R., Hepple, M., Saggion, H., Greenwood, M.A., Humphreys, K.: Supple: A practical parser for natural language engineering applications. In: International Workshop on Parsing Technologies, p. 200 (2005)Google Scholar
  7. 7.
    Genest, D., Chein, M.: A content-search information retrieval process based on conceptual graphs. Knowl. Inf. Syst. 8(3), 292–309 (2005)CrossRefGoogle Scholar
  8. 8.
    Lehmann, J., Bühmann, L.: AutoSPARQL: Let Users Query Your Knowledge Base. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 63–79. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Lei, Y., Uren, V.S., Motta, E.: SemSearch: A Search Engine for the Semantic Web. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI), vol. 4248, pp. 238–245. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Li, X., Roth, D.: Learning question classifiers. In: Proceedings of the 19th International Conference on Computational Linguistics, vol. 1, pp. 1–7. Association for Computational Linguistics (2002)Google Scholar
  11. 11.
    Merkel, A.P., Klakow, D.: Language Model Based Query Classification. In: Amati, G., Carpineto, C., Romano, G. (eds.) ECiR 2007. LNCS, vol. 4425, pp. 720–723. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Pradel, C., Haemmerlé, O., Hernandez, N.: Expressing Conceptual Graph Queries from Patterns: How to Take into Account the Relations. In: Andrews, S., Polovina, S., Hill, R., Akhgar, B. (eds.) ICCS-ConceptStruct 2011. LNCS, vol. 6828, pp. 229–242. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Pradel, C., Haemmerlé, O., Hernandez, N.: A Semantic Web Interface Using Patterns: The SWIP System. In: Croitoru, M., Rudolph, S., Wilson, N., Howse, J., Corby, O. (eds.) GKR 2011. LNCS, vol. 7205, pp. 172–187. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Russell, A., Smart, P.R.: Nitelight: A graphical editor for sparql queries. In: International Semantic Web Conference. Posters & Demos (2008)Google Scholar
  15. 15.
    Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query candidates for efficient keyword search on graph-shaped (rdf) data. In: ICDE, pp. 405–416 (2009)Google Scholar
  16. 16.
    Wang, H., Zhang, K., Liu, Q., Tran, T., Yu, Y.: Q2Semantic: A Lightweight Keyword Interface to Semantic Search. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 584–598. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Zhang, D., Lee, W.: Question classification using support vector machines. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval, pp. 26–32. ACM (2003)Google Scholar
  18. 18.
    Zhou, Q., Wang, C., Xiong, M., Wang, H., Yu, Y.: SPARK: Adapting Keyword Query to Semantic Search. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 694–707. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Camille Pradel
    • 1
  1. 1.Département de Mathématiques-InformatiqueIRIT, Université de Toulouse le MirailToulouse CedexFrance

Personalised recommendations