Freshening up while Staying Fast: Towards Hybrid SPARQL Queries

  • Jürgen Umbrich
  • Marcel Karnstedt
  • Aidan Hogan
  • Josiane Xavier Parreira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7603)


Querying over cached indexes of Linked Data often suffers from stale or missing results due to infrequent updates and partial coverage of sources. Conversely, live decentralised approaches offer fresh results directly from the Web, but exhibit slow response times due to accessing numerous remote sources at runtime. We thus propose a hybrid query approach that improves upon both paradigms, offering fresher results from a broader range of sources than Linked Data caches while offering faster results than live querying. Our hybrid query engine takes a cached and live query engine as black boxes, where a hybrid query planner splits an input query and delegates the appropriate sub-queries to each interface. In this paper, we discuss query planning alternatives and their main strengths and weaknesses. We also present coherence measures to quantify the coverage and freshness for cached indexes of Linked Data, and show how these measures can be used for hybrid query planning to optimise the trade-off between fresh results and fast runtimes.


Link Data SPARQL Query Query Pattern Triple Pattern Query Engine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buil-Aranda, C., Arenas, M., Corcho, O.: Semantics and Optimization of the SPARQL 1.1 Federation Extension. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part II. LNCS, vol. 6644, pp. 1–15. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.: FactForge: A fast track to the web of data. In: SWJ (2011)Google Scholar
  3. 3.
    Erling, O., Mikhailov, I.: RDF Support in the Virtuoso DBMS. In: Networked Knowledge – Networked Media. Springer (2009)Google Scholar
  4. 4.
    Hartig, O., Bizer, C., Freytag, J.-C.: Executing SPARQL Queries over the Web of Linked Data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 293–309. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Hartig, O., Langegger, A.: A database perspective on consuming Linked Data on the web. In: Datenbank-Spektrum (2010)Google Scholar
  6. 6.
    Käfer, T., Umbrich, J., Hogan, A., Polleres, A.: Towards a Dynamic Linked Data Observatory. In: LDOW at WWW (2012)Google Scholar
  7. 7.
    Karnstedt, M., Sattler, K., Geist, I., Höpfner, H.: Semantic Caching in Ontology-based Mediator Systems. In: Web und Datenbanken, Berliner XML-Tage (2003)Google Scholar
  8. 8.
    Ladwig, G., Tran, T.: Linked Data Query Processing Strategies. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 453–469. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Martin, M., Unbehauen, J., Auer, S.: Improving the Performance of Semantic Web Applications with SPARQL Query Caching. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part II. LNCS, vol. 6089, pp. 304–318. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello, G.: a document-oriented lookup index for open linked data. IJMSO (2008)Google Scholar
  11. 11.
    Podlipnig, S., Böszörményi, L.: A survey of web cache replacement strategies. ACM Comput. Surv. (2003)Google Scholar
  12. 12.
    Quilitz, B., Leser, U.: Querying Distributed RDF Data Sources with SPARQL. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 524–538. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: Optimization Techniques for Federated Query Processing on Linked Data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Tran, T., Zhang, L., Studer, R.: Summary Models for Routing Keywords to Linked Data Sources. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 781–797. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Umbrich, J., Hausenblas, M., Hogan, A., Polleres, A., Decker, S.: Towards dataset dynamics: Change frequency of linked open data sources. In: LDOW (2010)Google Scholar
  16. 16.
    Umbrich, J., Hose, K., Karnstedt, M., Harth, A., Polleres, A.: Comparing data summaries for processing live queries over Linked Data. WWWJ (2011)Google Scholar
  17. 17.
    Umbrich, J., Karnstedt, M., Land, S.: Towards understanding the changing web: Mining the dynamics of linked-data sources and entities. In: KDML (2010)Google Scholar
  18. 18.
    Umbrich, J., Karnstedt, M., Parreira, J.X., Polleres, A., Hauswirth, M.: Linked Data and Live Querying for Enabling Support Platforms for Web Dataspaces . In: DESWEB at ICDE (2012)Google Scholar
  19. 19.
    Williams, G.T., Weaver, J.: Enabling Fine-Grained HTTP Caching of SPARQL Query Results. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 762–777. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jürgen Umbrich
    • Marcel Karnstedt
      • Aidan Hogan
        • Josiane Xavier Parreira

          There are no affiliations available

          Personalised recommendations