Advertisement

Data-Driven Vehicle Identification by Image Matching

  • Jose A. Rodriguez-Serrano
  • Harsimrat Sandhawalia
  • Raja Bala
  • Florent Perronnin
  • Craig Saunders
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7584)

Abstract

Vehicle identification from images has been predominantly addressed through automatic license plate recognition (ALPR) techniques which detect and recognize the characters in the plate region of the image. We move away from traditional ALPR techniques and advocate for a data-driven approach for vehicle identification. Here, given a plate image region, the idea is to search for a near-duplicate image in an annotated database; if found, the identity of the near-duplicate is transferred to the input region. Although this approach could be perceived as impractical, we actually demonstrate that it is feasible with state-of-the-art image representations, and that it presents some advantages in terms of speed, and time-to-deploy. To overcome the issue of identifying previously unseen identities, we propose an image simulation approach where photo-realistic images of license plates are generated for desired plate numbers. We demonstrate that there is no perceivable performance difference between using synthetic and real plates. We also improve the matching accuracy using similarity learning, which is in the spirit of domain adaptation.

Keywords

Gaussian Mixture Model Image Retrieval Plate Image Image Match License Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Arth, C., Limberger, F., Bischof, H.: Real-time license plate recognition on an embedded DSP-platform. In: CVPR (2007)Google Scholar
  2. 2.
    Donoser, M., Arth, C., Bischof, H.: Detecting, Tracking and Recognizing License Plates. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part II. LNCS, vol. 4844, pp. 447–456. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Anagnostopoulos, C.N.E., Anagnostopoulos, I.E., Psoroulas, I.D., Loumos, V., Kayafas, E.: License plate recognition from still images and video sequences: A survey. IEEE Trans. on Intelligent Transportation Systems 9 (2008)Google Scholar
  4. 4.
    Chang, S.L., Chen, L.S., Chung, Y.C., Chen, S.W.: Automatic license plate recognition. IEEE Trans. on Intelligent Transportation Systems 5, 42–53 (2004)CrossRefGoogle Scholar
  5. 5.
    Perronnin, F., Sánchez, J., Mensink, T.: Improving the Fisher Kernel for Large-Scale Image Classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Chatfield, K., Lempitsky, V., Vedaldi, A., Zisserman, A.: The devil is in the details: an evaluation of recent feature encoding methods. In: BMVC (2011)Google Scholar
  7. 7.
    Bala, R., Zhao, Y., Burry, A., Kozitsky, V., Fillion, C., Saunders, C., Rodriguez-Serrano, J.A.: Image simulation for automatic license plate recognition. In: Proceedings of SPIE, vol. 8305 (2012)Google Scholar
  8. 8.
    Kulis, B., Saenko, K., Darrell, T.: What you saw is not what you get: Domain adaptation using asymmetric kernel transforms. In: CVPR (2011)Google Scholar
  9. 9.
    Jégou, H., Perronnin, F., Douze, M., Sánchez, J., Pérez, P., Schmid, C.: Aggregating local image descriptors into compact codes. IEEE Trans. on PAMI (2011)Google Scholar
  10. 10.
    Hays, J., Efros, A.A.: im2gps: estimating geographic information from a single image. In: CVPR (2008)Google Scholar
  11. 11.
    Hays, J., Efros, A.A.: Scene completion using millions of photographs. ACM Trans. on Graphics 26 (2007)Google Scholar
  12. 12.
    Marin, J., Vazquez, D., Gerenimo, D., Lopez, A.M.: Learning appearance in virtual scenarios for pedestrian detection. In: CVPR (2010)Google Scholar
  13. 13.
    Schels, J., Liebelt, J., Schertler, K., Lienhart, R.: Synthetically trained multi-view object class and viewpoint detection for advanced image retrieval. In: ICMR (2011)Google Scholar
  14. 14.
    Wang, K., Babenko, B., Belongie, S.: End-to-end scene text recognition. In: ICCV (2011)Google Scholar
  15. 15.
    Konidaris, T., Gatos, B., Ntzios, K., Pratikakis, I., Theodoridis, S., Perantonis, S.J.: Keyword-guided word spotting in historical printed documents using synthetic data and user feedback. IJDAR 9, 167–177 (2007)CrossRefGoogle Scholar
  16. 16.
    Rodríguez-Serrano, J.A., Perronnin, F.: Synthesizing queries for handwritten word image retrieval. Pattern Recognition 45, 3270–3276 (2012)CrossRefGoogle Scholar
  17. 17.
    Bai, B., Weston, J., Grangier, D., Collobert, R., Chapelle, O., Weinberger, K.: Supervised semantic indexing. In: CIKM (2009)Google Scholar
  18. 18.
    Weinberger, K., Saul, L.: Distance metric learning for large margin nearest neighbor classification. JMLR (2009)Google Scholar
  19. 19.
    Bottou, L.: Stochastic Learning. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) Machine Learning 2003. LNCS (LNAI), vol. 3176, pp. 146–168. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jose A. Rodriguez-Serrano
    • 1
  • Harsimrat Sandhawalia
    • 1
  • Raja Bala
    • 2
  • Florent Perronnin
    • 1
  • Craig Saunders
    • 1
  1. 1.Xerox Research Centre EuropeMeylanFrance
  2. 2.Xerox Research Center WebsterUSA

Personalised recommendations