Advertisement

Adaptive Visual Obstacle Detection for Mobile Robots Using Monocular Camera and Ultrasonic Sensor

  • İbrahim K. İyidir
  • F. Boray Tek
  • Doğan Kırcalı
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7584)

Abstract

This paper presents a novel vision based obstacle detection algorithm that is adapted from a powerful background subtraction algorithm: ViBe (VIsual Background Extractor). We describe an adaptive obstacle detection method using monocular color vision and an ultrasonic distance sensor. Our approach assumes an obstacle free region in front of the robot in the initial frame. However, the method dynamically adapts to its environment in the succeeding frames. The adaptation is performed using a model update rule based on using ultrasonic distance sensor reading. Our detailed experiments validate the proposed concept and ultrasonic sensor based model update.

Keywords

Obstacle detection ViBe ultrasonic sensor mobile robot 

References

  1. 1.
    Desouza, G., Kak, A.: Vision for mobile robot navigation: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 237–267 (2002)CrossRefGoogle Scholar
  2. 2.
    Bonin-Font, F., Ortiz, A., Oliver, G.: Visual navigation for mobile robots: A survey. J. Intell. Robotics Syst. 53, 263–296 (2008)CrossRefGoogle Scholar
  3. 3.
    Ohya, I., Kosaka, A., Kak, A.: Vision-based navigation by a mobile robot with obstacle avoidance using single-camera vision and ultrasonic sensing. IEEE Transactions on Robotics and Automation 14, 969–978 (1998)CrossRefGoogle Scholar
  4. 4.
    Ohnishi, N., Imiya, A.: Featureless robot navigation using optical flow. Connection Science 17, 23–46 (2005)CrossRefGoogle Scholar
  5. 5.
    Ulrich, I., Nourbakhsh, I.R.: Appearance-based obstacle detection with monocular color vision. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence, pp. 866–871. AAAI Press (2000)Google Scholar
  6. 6.
    Discant, A., Rogozan, A., Rusu, C., Bensrhair, A.: Sensors for obstacle detection - a survey. In: 30th International Spring Seminar on Electronics Technology, pp. 100–105 (2007)Google Scholar
  7. 7.
    Borenstein, J., Koren, Y.: Obstacle avoidance with ultrasonic sensors. IEEE Journal of Robotics and Automation 4, 213–218 (1988)CrossRefGoogle Scholar
  8. 8.
    Yu, M., Shu-qin, L.: A method of robot navigation based on the multi-sensor fusion. In: 2010 2nd International Workshop on Intelligent Systems and Applications (ISA), pp. 1–4 (2010)Google Scholar
  9. 9.
    Barnich, O., Van Droogenbroeck, M.: Vibe: A universal background subtraction algorithm for video sequences. IEEE Transactions on Image Processing 20, 1709–1724 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Jodoin, P.M., Mignotte, M., Konrad, J.: Statistical background subtraction using spatial cues. IEEE Transactions on Circuits and Systems for Video Technology 17, 1758–1763 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • İbrahim K. İyidir
    • 1
  • F. Boray Tek
    • 1
  • Doğan Kırcalı
    • 1
  1. 1.Robotics and Autonomous Vehicles Laboratory, Department of Computer EngineeringIşık UniversityİstanbulTurkey

Personalised recommendations