Advertisement

Time-Lapse Image Fusion

  • Francisco J. Estrada
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7584)

Abstract

Exposure fusion is a well known technique for blending multiple, differently-exposed images to create a single frame with wider dynamic range. In this paper, we propose a method that applies and extends exposure fusion to blend visual elements from time sequences while preserving interesting structure. We introduce a time-dependent decay into the image blending process that determines the contribution of individual frames based on their relative position in the sequence, and show how this temporal component can be made dependent on visual appearance. Our time-lapse fusion method can simulate on video the kind visual effects that arise in long-exposure photography. It can also create very-long-exposure photographs impossible to capture with current digital sensor technologies.

Keywords

High Dynamic Range High Dynamic Range Image Laplacian Pyramid Motion Video Gaussian Envelope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Debevec, P., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: SIGGRAPH, pp. 369–378 (1997)Google Scholar
  2. 2.
    Bloch, C.: The HDRI Handbook: High Dynamic Range Imaging for Photographers and CG Artists. Rocky Nook (2007)Google Scholar
  3. 3.
    Hoefflinger, B. (ed.): High-Dynamic-Range (HDR) Vision. Springer (2005)Google Scholar
  4. 4.
    Hasinoff, S., Durand, F., Freeman, W.: Noise-optimal capture for high dynamic range photography. In: CVPR, pp. 553–560 (2010)Google Scholar
  5. 5.
    Reinhard, E., Devlin, K.: Dynamic range reduction inspired by photoreceptors. IEEE Transactions on Visualization and Computer Graphics 11, 13–24 (2005)CrossRefGoogle Scholar
  6. 6.
    Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range images. ACM Transactions on Graphics 21, 257–266 (2002)Google Scholar
  7. 7.
    Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. ACM Transactions on Graphics 21, 249–256 (2002)CrossRefGoogle Scholar
  8. 8.
    Mantiuk, R., Myszkowski, K., Seidel, H.: A perceptual framework for contrast processing of high dynamic range images. ACM Transactions on Applied Perception 3, 286–308 (2006)CrossRefGoogle Scholar
  9. 9.
    Kim, M., Kautz, J.: Characterization for high dynamic range imaging. Eurographics 27, 691–697 (2008)Google Scholar
  10. 10.
    Goshtasby, A.: Fusion of multi-exposure images. Image and Vision Computing 23, 611–618 (2005)CrossRefGoogle Scholar
  11. 11.
    Mertens, T., Kautz, J., Van Reeth, F.: Exposure fusion. In: Pacific Conference on Computer Graphics and Applications, pp. 382–390 (2007)Google Scholar
  12. 12.
    Burt, P., Adelson, E.: A multi-resolution spline with application to image mosaics. ACM Transactions on Graphics 2, 217–236 (1983)CrossRefGoogle Scholar
  13. 13.
    Hassinof, S., Kutulakos, K.: A layer-based restoration framework for variable apperture photography. In: ICCV, pp. 1–8 (2007)Google Scholar
  14. 14.
    Schaul, L., Fredembach, C., Süsstrunk, S.: Color image dehazing using the near-infrared. In: ICIP, pp. 1629–1632 (2009)Google Scholar
  15. 15.
    Bennet, E., Mason, J., McMillan, L.: Multispectral bilateral video fusion. IEEE Transactions on Image Processing 16, 1185–1194 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kwatra, V., Schödl, A., Essa, I., Turk, G., Bobick, A.: Graphcut textures: Image and video synthesis using graph cuts. In: SIGGRAPH, pp. 277–286 (2003)Google Scholar
  17. 17.
    Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. In: SIGGRAPH, pp. 313–318 (2003)Google Scholar
  18. 18.
    Hays, J., Efros, A.: Scene completion using millions of photographs. In: SIGGRAPH (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Francisco J. Estrada
    • 1
  1. 1.University of Toronto at ScarboroughTorontoCanada

Personalised recommendations